スラリーアイス生成時の濃度と氷粒子径の関係評価

1. 序論

凍結濃縮の一つの方法である懸濁結晶法は、水溶液中に氷 結晶が混在した懸濁液(以下,スラリーアイスと呼ぶ.)を 用いた濃縮方法である. 懸濁結晶法は水溶液中の溶質を取 り込まないで純度の高い氷結晶を発生させることができる. しかし、分離工程において、水溶液の一部が毛管現象によ って、氷結晶表面に付着し、氷結晶間に保持されることに よる濃縮液の回収率の低下が問題となっている. 回収率向 上のため、毛管現象のパラメータの一つである氷結晶の粒 子径(以下、氷粒子径と呼ぶ.)の把握が重要である. そこ で、スラリーアイス生成時の氷粒子径を定量的に調べるこ とを研究目的とした.

2. 水溶液濃度と氷粒子径の定量的評価

2.1 実験目的

スラリーアイス生成時の水溶液濃度と氷粒子径の関係に おいて、先行研究⁽¹⁾から定性的な関係は知られているもの の、装置設計に使用できる定量的関係は未解明である. そ こで液状食品の代表的な溶質であるスクロース(C₁₂H₂₂O₁₁) と食塩(NaCl)をサンプルに実験的検証を行った.

2.2 実験方法

実験フローを図1,実験条件を表1に示す.本実験では, 純水生成装置(ADVANTEC 製, RFP841AA)で生成した純水にス クロース(C12H22O11)または食塩(NaCl)を溶解させた水溶液 を用いた. まず, 挿入タンクに水溶液を注ぎ, マグネット ポンプ(三相電機製, PMD-331B6C)を用いて、製氷機及び貯蓄 タンクに水溶液を循環させた. ここで製氷機内を氷膜ので きる温度にするためにサーモチラー(SMC 製, HRZ002-L1DY, HRSH90-AN-20)を使用し,冷却を行った. データロガー (KEYENCE 製, NR-TH08, NR-500)を使用し, 製氷機の入り口温 度と出口温度を計測した. また貯蓄タンク内に外部からの 侵入熱が加わることを防ぐために, 貯蓄タンク表面に断熱 材を貼ると共に、サーモチラー(ヤマト科学製, CLH610)を使 用し、冷却を行った. 撹拌機(IKA 製, EUROSTSR20digital) を使用し、 スラリーアイスを攪拌させ、 貯蓄タンク上部で 氷結晶が凝集することを防いだ. 貯蓄タンク内に氷結晶が 発生したタイミングでスラリーアイスを粒子径測定装置 (Malvern Instruments Ltd 製, Spraytec)で観察できるよう に、マグネットポンプ(三相電機製, PMD-121B6J)を使用し、 スラリーアイスを観察部まで送液した. 氷結晶発生直後の 測定を初期値とし、3分毎に計5回計測を行った.この5回 の計測を各濃度で3回ずつ実施した.

システム工学群

ものづくり先端技術研究室 1240058 橘田 一輝

Fig.1 Experiment flow

Table1 Experimental conditions

Solute	$C_{12}H_{22}O_{11}$, (NaCl)
Aqueous solution amount [L]	9.3
Atmosphere temperature [°C]	15
Concentration [°Brix ,(wt%)]	10,15,20,25,30, (0.93, 1.46, 2.05, 2.69, 3.41)
Solution flow rate [L/m]	10
Refrigerant temperature (ice maker)[°C]	-10
Refrigerant temperature (storagetank)[°C]	-1
Mixer rotation speed [min ⁻¹]	447
Measured particle size [µm]	$D_{10}, D_{50}, D_{90}, D_{32}$

2.3 実験結果

2.3.1 各水溶液の氷粒子径の経時変化に関する結果

スクロース濃度 10°Brix と NaCl 濃度 0.931wt%での氷粒子 径の経時変化を図 2 に示す. プロットは計測データの平均 を示し, エラーバーは計測データの最大最小誤差の範囲を 示した.

図2a)について、開始0分時に D_{10} が50 μ m、 D_{50} が120 μ m、 D_{90} が380 μ m、 D_{32} が100 μ mとなった。その後時間の経過と ともに、 D_{10} は50 μ m付近を推移、 D_{50} は100 μ mから200 μ mの 間を変動、 D_{90} は400 μ mから500 μ mの間を緩やかに増加、 D_{32} はおよそ100 μ mで一定となった。

図2 b)について、開始0分時に D_{10} が100µm、 D_{50} が350µm、 D_{90} が690µm、 D_{32} が210µmとなった。その後時間の経過とともに、 D_{10} は100µm付近を推移、 D_{50} は350µmから400µmの間で、 D_{90} は680µmから720µmの間で開始6分がピークとなり、 D_{32} はおよそ200µmで一定となった。

Fig.2 Ice particle diameter and change over time in each aqueous solution with a mass molarity of 0.325 mol/kg

スクロース濃度 15°Brix と NaCl 濃度 1.479wt%での氷粒子 径の経時変化を図 3 に示す.

図3 c)について、開始0分時に D_{10} が50µm、 D_{50} が150µm、 D_{90} が310µm、 D_{32} が100µmとなった。その後時間の経過とともに、 D_{10} は50µm付近を推移、 D_{50} は150µmから170µmの間を変動、 D_{90} は300µmから400µmの間で開始6分がピークとなり、 D_{32} はおよそ100µmで一定となった。

図3 d)について、開始0分時に D_{10} が100µm、 D_{50} が320µm、 D_{90} が 610µm、 D_{32} が 200µmとなった. その後時間の経過と ともに、 D_{10} は 100µm付近を推移、 D_{50} は 320µmから 410µm の間を変動、 D_{90} は 610µmから 710µmの間で開始 3 分がピー クとなり、 D_{32} はおよそ 200µmで一定となった.

Fig.3 Ice particle diameter and change over time in each aqueous solution with a mass molarity of 0.516 mol/kg

スクロース濃度 20°Brix と NaCl 濃度 2.096wt%での氷粒子 径の経時変化を図 4 に示す.

図4 e)について、開始0分時に D_{10} が50 μ m、 D_{50} が90 μ m、 D_{90} が120 μ m、 D_{32} が90 μ mとなった。その後時間の経過とと もに、 D_{10} は50 μ m付近を推移、 D_{50} は100 μ m付近を推移、 D_{90} は120 μ mから400 μ mの間を直線的に増加、 D_{32} はおよそ 90 μ mで一定となった。

図4 f)について,開始0分時に D_{10} が100 μ m, D_{50} が290 μ m, D_{90} が500 μ m, D_{32} が190 μ mとなった. その後時間の経過と ともに、 D_{10} は100 μ m付近を推移、 D_{50} は200 μ mから300 μ m の間を変動、 D_{90} は500 μ mから600 μ mの間を変動、 D_{32} はお よそ190 μ m付近で一定となった.

Fig.4 Ice particle diameter and change over time in each aqueous solution with a mass molarity of 0.731 mol/kg

スクロース濃度 25°Brix と NaCl 濃度 2.794wt%での氷粒 子径の経時変化を図 5 に示す.

図 5 g)について,開始 0 分時に D_{10} が 40µm, D_{50} が 80µm, D_{90} が 110µm, D_{32} が 80µmとなった. その後時間の経過とともに, D_{10} は 40µm付近を推移, D_{50} は 80µmから 100µmの間を変動, D_{90} は 400µmから 500µmの間を緩やかに増加, D_{32} はおよそ 80µmで一定となった.

図 5 h)について、開始 0 分時に D_{10} が 90µm、 D_{50} が 200µm、 D_{90} が 400µm、 D_{32} が 120µmとなった。その後時間の経過と ともに、 D_{10} は 70µmから 90µmの間を緩やかに減少、 D_{50} は 150µmから 300µmの間を変動、 D_{90} は 400µmから 500µmの間 を変動、 D_{32} はおよそ 120µmで一定となった。

Fig.5 Ice particle diameter and change over time in each aqueous solution with a mass molarity of 0.974 mol/kg

スクロース濃度 30°Brix と NaCl 濃度 3.592wt%での氷粒子 径の経時変化を図 6 に示す.

図 6 i)について、開始 0 分時に D_{10} が 30µm、 D_{50} が 80µm、 D_{90} が 110µm、 D_{32} が 80µmとなった。その後時間の経過とと もに、 D_{10} は 30µm付近を推移、 D_{50} は 80µm付近を推移、 D_{90} は 110µm付近を推移、 D_{32} はおよそ 80µmで一定となった。

図6 j)について、開始0分時に D_{10} が80 μ m、 D_{50} が200 μ m、 D_{90} が400 μ m、 D_{32} が120 μ mとなった。その後時間の経過と ともに、 D_{10} は80 μ m付近を推移、 D_{50} は100 μ mから200 μ mの 間を変動、 D_{90} は280 μ mから480 μ mの間を変動、 D_{32} はおよ そ120 μ mで一定となった。

Fig.6 Ice particle diameter and change over time in each aqueous solution with a mass molarity of 1.253 mol/kg

2.3.2 各水溶液の氷粒子径と濃度変化に関する結果

各水溶液の氷粒子径の経時変化に関する実験結果から, 製氷開始0分でのスクロースとNaClでの氷粒子径と濃度の 関係を図7に示す.

図7 A)について,濃度の上昇に伴い, D_{10} は50 μ m付近を 緩やかに変動, D_{50} は 80 μ mから 140 μ mの間で変動, D_{90} は 15°Brix から 20°Brix の間で 360 μ mから 100 μ mにステップ的 に減少, D_{32} はおよそ 100 μ mで一定であった.

図7 B)について、濃度の上昇に伴い、 D_{10} は110 μ mから60 μ mの間を減少、 D_{50} は350 μ mから200 μ mを減少、 D_{90} は700 μ mから400 μ mの間を減少、 D_{32} は220 μ mから150 μ mの間を減少した.

Fig.7 Relationship between concentration change and ice particle size in each aqueous solution

2.4 考察

高濃度ほど粒子径が微小化し、さらに均一になることは 濃度変化による氷膜形状の変化が影響していると考察でき る. スラリーアイスを生成するために用いる水溶液の濃度 と製氷により伝熱面に形成される氷膜の関係は、水溶液の 濃度が高くなるに従い、氷膜の形状は針状氷になることがこ れまでの研究報告でわかっている⁽²⁾.

Fig.8 Low concentration ice film shape

Fig. 9 High concentration ice film shape

高濃度のとき,氷膜が針状氷に変化することで,掻き取 り刃で切削する部分が小さくなるため,微小で均一な氷結 晶が得られると考察できる.

3. 結論

液状食品の代表的な溶質であるスクロース(C₁₂H₂₂O₁₁)と 食塩(NaCl)をサンプルに、スラリーアイス生成時の濃度と 氷粒子径の定量的な関係を示した.その結果から高濃度に なるにつれて氷粒子径が微小化することを得た.その結果 の考察として、高濃度になるにつれて氷粒子径が微小化す ることは濃度変化による氷膜の変化が影響していることを 示した.

参考文献

- (1) 中村泰介:スラリーアイス技術を用いた凍結濃縮装置により生成される氷粒子の粒径評価,高知工科大学大学院工学研究科基盤工学専攻知能機械システム工学コース修 士論文(2016), p30-52
- (2) 片岡遥渚:単成分水溶液を用いた氷膜物性値の評価,高 知工科大学大学院知能機械工学コース(2021), pp.49-51