非接触機械試験機のための磁気浮上機構

Magnetic levitation for non-contact mechanical testing machine

1 緒言

磁気浮上技術は非接触という利点から,多くの産業に利 用されてきており,機械試験機にも利用されている⁽¹⁾⁽²⁾⁽³⁾. 従来の機械試験機は,試験片を固定する治具と試験機の間 に働く接触力を用いて固定している.ガス中などの特殊な 環境で試験する必要がある場合,試験機全体を特殊環境内 に入れる必要がある.磁気浮上技術を利用することで,磁 性治具に非接触力を加えて,試験片に応力を与えて試験を 行える.このような装置であれば,試験片と磁性治具のみ を特殊な環境に置くことで試験が可能であり,簡便に特殊 環境下での試験が可能である.

本研究では,引張圧縮,曲げ,ねじりの磁気浮上多機能 機械試験機のための基本的考察を行ったのでこれを報告す る.

2 試験機の構造と動作原理

2.1 試験機の構造

図1は提案する試験機において浮上させる部分の磁性治 具と試験片の概略図である.図の中央に位置する赤い部分 が試験片であり、その上部に非接触で試験片を固定する磁 気浮上治具、下部に試験片に引張圧縮、曲げ、ねじりの試 験を行うための非接触応力を加えるための磁気浮上治具が 取り付けられている.上部の磁性治具はZ軸方向に永久磁 石と空芯コイルによる吸引排斥力を発生し、X、Y方向の発 生力およびZ軸周りの回転トルクは電磁石による吸引力に よって発生する.下部の治具には電磁石による吸引力のみ を用いて応力を発生させる.

Fig. 1 Overview of magnetic levitation test machine

2.2 引張, 圧縮試験の動作原理とハルバッハ配列の利用

今回の発表では、図1に示す浮上治具のうち上部の治具 について設計,開発を行った.図2に提案する引張圧縮, システム工学群

機械・航空システム制御研究室 1240080 鈴木 健範

曲げ,ねじりの機械試験機に利用可能な上部の治具の磁気 浮上機構の全体図と磁性治具の断面図を示す.試験片は図1 のように上下方向に配置され引張圧縮試験は鉛直方向(Z方 向)の応力を加えることで試験される.図3にZ方向の動作 原理を示す.図3のように空芯コイルと永久磁石による吸 引排斥力を利用することで引張圧縮試験が可能な機構とす る.圧縮試験も行える試験機を製作するため,吸引力しか ない電磁石だけでは応力発生のためには不十分である.圧 縮試験を行うためには鉛直下向き方向への力が必要である が、上部の治具の下部には試験片を設置するため、上部の 治具の下部に電磁石を設置することはできない.

空芯コイルによるローレンツ力を用いる機構を提案す る.しかし、空芯コイルは電磁石よりも、試験するために 大きな電流が必要となる.コイルの銅線には流すことので きる電流の大きさに限界があるため、磁極の向きが異なる 永久磁石を組み合わせたハルバッハ配列(4)の永久磁石を利 用する.ハルバッハ配列とは、複数の永久磁石を組み合わ せることによって特定の方向の磁場強度を大きくする技術 である.図4にコイルの巻き数を562turns、空芯コイルと永 久磁石のエアギャップを3.5mmとし、ハルバッハ配列永久 磁石を利用しているときと磁極が一方向のみの永久磁石を 利用しているときと空芯コイルに流れる電流に対する浮上 力の大きさを比較したグラフを示す.図4からハルバッハ 配列を利用することで、同じ電流の大きさでもより大きな Z方向の発生力が得られることがわかる.

Fig. 2 Overview of suggested mechanism and cross-sectional view of the floating object

Fig. 3 Working Principle of Z

2.3 曲げ、ねじり試験の動作原理

図5左にX,Y方向と図5右にZ軸周りの回転の動作原 理を示す.曲げ試験を行うときに下部の治具に-X方向に非 接触応力が加わるため、上部の治具にX方向の吸引力を発 生するように電磁石を図5左のように配置している.ねじ りの試験を行うときに下部の治具からZ軸に右ねじのトル クが加えられるため、上部の治具が固定を保持するために 図5右のように反対方向にトルクが発生するように電磁石 をそれぞれの面の中心から少しずらして配置している.

Fig. 5 Working Principle of X, Y and RZ

3 シミュレーション

引張, 圧縮試験で,下部の治具から Z 方向に負荷が加え られたときの,空芯コイルと永久磁石のエアギャップzを空 芯コイルの電流iで制御し,安定させることが目的である. 浮上物体の質量をmとするときのプラントモデルを以下と する.

$$\frac{\Delta z}{\Delta i} = \frac{k_i}{-ms^2} \tag{1}$$

ただし、 k_i は空芯コイルと永久磁石の動的パラメータに依存する係数である. 平衡状態 $F_0(i_0,z_0)$ を $i_0 = \frac{mg}{k_i}$ (A), $z_0 =$

0.5(mm)と定義し, PD 制御器を用いてエアギャップzの位置 制御のシミュレーションを行う.1 秒後に Z 方向に 0.3mm のステップ外乱を与え,そのときに設定したパラメータを 表1,結果を図6に示す.

Table 1 Simulation parameters of Z

m(kg)	$z_0(\text{mm})$	P(A/m)	D(As/m)	$k_i(N/A)$
0.674	0.5	373.4	12.2	3.3

図6より、1秒にステップ外乱を加えたとき、定常値に収束 する整定時間が0.1(s)であるのに対してステップ外乱に対す るオーバーシュートが5%以内であるため、Z方向の変位z の安定性を維持するには十分な結果であるといえる.X,Y 方向の並進とZ軸周りの回転に関しても同様にシミュレー ションを行い、それぞれゲインなどのパラメータを得た.

4 試験機の製作

図7に製作した試験機を示す.そして、図8に製作した ハルバッハ配列の永久磁石を示す. 試験機に変位センサを4 つ設置し、シミュレーションから得られたパラメータをも とに浮上実験を検討する.

5 結言

提案した多機能機械試験の機構の制御シミュレーション を行い,試験機を製作した.

試験機を動作させてシミュレーション結果のような応答が 得られるような制御,試験片に負荷を加える側の磁気浮上 の機構について検討する.

文献

- Ren, Mengyi, and Koichi Oka. "Design and analysis of a non-contact tension testing device based on magnetic levitation." *IEEE Access* 10 (2022): 19312-19332.
- (2) Ren, Mengyi, and Koichi Oka. "Design of a Non-contact Bending Testing Device using Magnetic Levitation Mechanism." *IEEE Transactions on Industrial Electronics* (2023).
- (3) Ren, Mengyi, and Koichi Oka. "Design of a Noncontact Torsion Testing Device Using Magnetic Levitation Mechanism." Actuators. Vol. 12. No. 4. MDPI, 2023.
- (4)大洋電機エンジニアリング

https://taiyo-denki.com/product-h/