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1 Introduction 

Agriculture, fundamental for human sustenance and 

global food supply, confronts challenges like labor 

intensiveness and weather unpredictability, with variations 

such as droughts and floods threatening crop viability. 

Technology-driven transformations in modern agriculture, 

incorporating genetics, automation, and precision farming, 

bolster efficiency, diminish manual labor dependence[1] , and 

facilitate large-scale cultivation. Nevertheless, farming 

complexity persists due to natural variability, encompassing 

factors like crop choice, soil quality, irrigation, sunlight, and 

CO2 levels, significantly influencing outcomes and being 

susceptible to weather fluctuations. Urbanization's allure 

diminishes the rural workforce, resulting in fallow lands and 

diminished output, impacting global food security[2]. 

Amid the global push for automated harvesting 

systems, which leverage machine vision technology for 

precise fruit and crop harvesting, challenges persist in 

effectively synchronizing these robots with optimal 

environmental conditions. The vision systems of harvesting 

robots underscore the critical role of sunlight in green pepper 

harvesting, as it is essential for accurately identifying 

peppers amidst foliage. The preferred harvesting period 

typically spans from 8:00 AM to 4:30 PM[3], although this 

timeframe varies based on weather conditions and 

seasonality. Cloud cover, rainfall, and shortened winter 

daylight can restrict harvesting opportunities. However, 

relying solely on one type of camera poses limitations, 

particularly in adverse weather conditions. For instance, 

using an RGB camera is ineffective on rainy or cloudy days 

due to its reliance on light.  

Conversely, relying solely on one camera can be 

challenging when the weather condition is insufficient for 

effective data collection. To reduce these challenges, 

researchers simultaneously employ both types of cameras to 

collect data. In this study, the researchers analyze the results 

based on RGB and IR images. Artificial Intelligence (AI) 

systems, integral to contemporary society, emulate and 

enhance human capacities through continuous learning. AI's 

utility, particularly in visually discerning tasks, is 

unparalleled. While human vision excels in object 

discrimination, AI's tireless, accurate operation is unmatched, 

leveraging training on labeled datasets through machine 

vision techniques like deep learning[4]. Additionally, the 

researchers utilize a Mask R-Convolutional Neural Network 

(CNN)[5] and Structural Similarity Index Measure (SSIM)[6] 

to enhance recognition and segmentation rates. 

 

2 Materials and Methods 

2.1 System Setup 

Using two distinct cameras for data collection, the Intel 

Realsense D455 and the Optris XI400 presents unique 

challenges due to their differing dimensions and lens 

positions. Specifically, the Intel camera exhibits a deviation 

from the center, as shown in Fig 1, while the lens of the 

Optris camera aligns centrally within the device. 

Consequently, identifying the optimal photographic location 

becomes imperative, particularly considering the 

simultaneous capture of images from both sides of the green 

chili during data collection. Therefore, meticulous planning 

is required to ensure that the presence of one camera does not 

interfere with the data collection process of the other. 

 

2.2 Visual Sensing 

Utilizing multiple cameras to capture identical scenes 

introduces challenges as the resulting images exhibit distinct 

characteristics due to variations in camera positions. Despite 

visual similarities, the inherent spatial differences hinder the 

images from identical, mainly when utilized for diverse 

processing needs. This discrepancy poses a significant issue 

as it can lead to calculation inaccuracies. Camera calibration 

becomes imperative, enhancing the precision of location 

detection and minimizing errors. The chosen approach 

involves applying the principles of triangulation within a 

stereo-vision system, as shown in Fig 2[7]. This method 

ensures a more accurate alignment of captured images, 

facilitating subsequent processing tasks. By adhering to the 

triangulation principle, the system aims to harmonize the 

spatial information from multiple cameras, enabling more 

reliable and consistent results in various applications and 

addressing the nuanced complexities of utilizing multiple 

cameras for image capture and subsequent analysis.   

Fig. 1  Intel Realsense D455 lens position 

 



 

The procedure above delineates a methodology tailored for 

parallel cameras within the same plane, sharing identical 

camera types. However, the forthcoming experiment 

deviates from this configuration, as it involves cameras set 

parallel to each other but positioned at an inclined angle, as 

shown in figure 3. 

 

Additionally, the cameras employed in this setup are of 

dissimilar types. Consequently, an additional equation is 

necessitated. Specifically, this Equation pertains to the 

angles of the two cameras oriented toward the object, 

denoted as Equation 1 

 

𝛼 = 180° − (𝛼𝐵 + 𝛼𝐶)                           (1) 

 

Moreover, there will be two additional variables 𝛾𝑖   

which is the distance between the two types of cameras, and 

𝜇𝑖  the distance between the camera and the object that 

collects data. 

 

2.3 Image Acquisition 

This investigation gathered a dataset comprising 

greenhouse green pepper images generously provided by 

KUT. The dataset incorporated diverse environmental 

conditions, encompassing sunny and cloudy days, and 

captured the subjects from various perspectives. The dataset 

employed in this study comprised a total of 4320 images, 

encompassing four distinct green pepper types and two 

different image modalities (RGB and IR) , as shown in Fig 

4. The researcher judiciously distributed each category into 

training and validation sets to ensure a comprehensive 

evaluation, employing a randomized allocation method. 

Specifically, the training sets were designated for utilization 

during the model training phase, serving as the original input 

images for the training process. In contrast, the validation 

sets were reserved for assessing the model's performance 

after training. This meticulous dataset division into training 

and validation subsets facilitates a robust evaluation of the 

developed model under varying conditions, ensuring its 

efficacy and generalizability beyond the training data. 

provides a succinct representation of the randomized 

allocation of images across the training and validation sets 

for each category. 

 

 

 

2.4 Image Preprocessing 

Data augmentation was embraced to expand the sample 

size further to enhance the dataset's comprehensiveness, 

augment the feature information across various levels within 

the images, and improve the algorithm's adaptability to real-

world scenarios. Specifically, the data augmentation 

technique employed in this investigation incorporated 

Laplacian sharpening. The utilization of Laplacian 

sharpening serves to enhance image sharpness, rendering 

object edge details within the image more distinct. 

Additionally, it addresses issues arising from unclear images 

due to low resolution. The application of the Laplace 

operator, integral to Laplacian sharpening, is instrumental in 

achieving these improvements. Laplacian sharpening 

encompasses the application of the Laplacian operator to an 

image[8]. The Laplacian operator, symbolized as ∇², 
constitutes a second-order derivative and is frequently 

expressed in mathematical terms as follows equation 2 

 

∇2𝑓(𝑥, 𝑦) =
𝜕2𝑓(𝑥,𝑦)

𝜕𝑥2 +
𝜕2𝑓(𝑥,𝑦)

𝜕𝑦2                      (2) 

 

Within the domain of image processing, the technique of 

Laplacian sharpening entails the deduction of the outcome 

derived from applying the Laplacian operator to the original 

image from the original image. This process generates a 

sharpened image, denoted as 𝑔  and can be formally 

articulated as follows equation 3 

 

𝑔(𝑥, 𝑦) = 𝑓(𝑥, 𝑦) − ∇2𝑓(𝑥, 𝑦)                     (3) 

Fig. 2  Stereo vision system triangulation principle 

 

Fig. 3  RGB Angle and Distance test setup 

 

Fig. 4  Dataset of green pepper a) RGB left side covered by 

foliage 0%, b) RGB : right side covered by foliage 0%, c) 

RGB : right side covered by foliage 10-30%, d) RGB : 

right side covered by foliage >30%, e) IR : left side 

covered by foliage 0%, f) IR : right side covered by 

foliage 0%, g) IR : right side covered by foliage 10-30%, 

h) IR : right side covered by foliage >30%. 

 



𝑔(𝑥, 𝑦) is the sharpened image. 
𝑓(𝑥, 𝑦) is the original image. 
 

In this context, where 𝑥 and 𝑦 represent pixel coordinate 

values, 𝑔(𝑥, 𝑦)  signifies the resulting sharpened image, 

𝑓(𝑥, 𝑦)  denotes the original image, ∇2𝑓(𝑥, 𝑦) represents 

the Laplace transform of the original image, and the Laplace 

mask is visually presented in equation 4 and results after 

image sharpening, as shown in Fig 3 

 

[
0 1 0
1 −4 1
0 1 0

]                         (4) 

 

 

 

 

2.5 Data Annotation 

The image annotation process holds pivotal significance 

in training models, as it involves delineating object 

boundaries to ensure the specificity of model training 

towards desired objectives. In this context, the annotation 

tool employed is Labelme. The experimental dataset was 

annotated using Labelme to produce mask images 

corresponding to the delineation of green peppers within the 

images. Furthermore, evaluating the trained model's 

performance in instance segmentation involved a 

comparative analysis between the annotated mask images 

and the model's predicted mask outputs. Specifically, 

regionsas of the images corresponding to green peppers were 

meticulously labeled, while the remaining areas were 

designated as background. The resultant annotated images 

depict the labeled regions of green peppers, as shown in Fig 

4. 

 

 

 

 

2.6 Mask R-CNN 

Mask R-CNN, an abbreviation for Mask Region-based 

Convolutional Neural Network, stands at the forefront of 

contemporary computer vision research, exhibiting 

remarkable prowess in instance segmentation. Introduced as 

an extension of the Faster R-CNN architecture, Mask R-

CNN seamlessly integrates object detection and 

segmentation, enabling precise delineation of object 

boundaries and identifying distinct instances within an 

image[9]. The fundamental innovation within Mask R-CNN 

lies in its ability to concurrently generate pixel-level masks 

for each object instance while performing object detection. 

This task amalgamation is accomplished by incorporating a 

dedicated mask branch parallel to the existing branches for 

object classification and bounding box regression. 

Leveraging a two-stage approach, Mask R-CNN initially 

proposes region proposals through the Region Proposal 

Network (RPN) and subsequently refines these proposals 

with refined bounding box coordinates and corresponding 

instance masks. The architecture's robustness is underscored 

by its capacity to handle various object scales and shapes, 

rendering it highly adaptable to complex scenes. Mask R-

CNN has proven instrumental in various applications, 

ranging from medical image analysis to autonomous vehicles, 

owing to its proficiency in extracting fine-grained spatial 

information. As a testament to its efficacy, Mask R-CNN has 

emerged as a cornerstone in instance segmentation, 

embodying the paradigm shift towards comprehensive visual 

scene understanding and semantic segmentation in 

academic ,industrial spheres and an overview of Mask R-

CNN, as shown in Fig 7. 

 

2.7 Feature Extraction and ROI 

The establishment of deep neural network models with 

varied depths is accomplished by designing different weight 

layers. AlexNet, ZF, VGG, GoogleNet, and ResNet are 

prominent models in deep neural networks[10]. Although 

deeper networks have the potential to yield higher accuracy, 

a trade-off exists with a reduction in model training and 

detection speeds. ResNet, notable for its residual structure 

mitigating challenges such as gradient disappearance and 

training degradation without increasing model parameters, 

has been chosen as the foundational network for feature 

extraction in this research. This research employs two types 

of cameras, resulting in two distinct pixel configurations for 

RGB and IR images of a single green pepper. FPN outputs 

for different levels are designed to accommodate these 

varying image scales. The study focuses on analyzing single 

green peppers using two distinct imaging modalities: RGB 

and Infrared (IR). The base image size is standardized for the 

RGB images at 720x1280 pixels. Feature Pyramid Network 

(FPN) outputs at different levels are meticulously tailored to 

accommodate these specifications: 

Fig. 5  Image sharpening a) Original RGB image, b) RGB after 

sharpening, c) Original IR image, ) IR after sharpening 

 

 

Fig. 6  RGB and IR image with label and mask box 

 

Fig. 7  Overview of Mask R-CNN  

 



FPN output level 2-5 are 1/4, 1/8, 1/16 and 1/32 and 

dimensions size are 180x320, 90x160, 45x80, 22.5x40 pixels 

accordingly. Concurrently, Infrared (IR) images of single 

green peppers are acquired with a base image size of 

288x382 pixels. The FPN outputs at different levels for IR 

images are adjusted accordingly: 1/4, 1/8, 1/16, 1/32, and the 

dimensions' sizes are 72x96, 36x48, 18x24, and 9x12 pixels. 

These meticulously designed imaging scales and FPN 

outputs are integral to generating Region of Interest (RoI) for 

subsequent analysis and facilitate the effective 

representation and detection of features in the study's context 

of single green peppers. In RoI generation, the aspect ratio 

of labeled rectangular boxes for single and occluded green 

peppers is approximately 1:1, determined by bounding box 

definition using minimum and maximum coordinates in both 

x and y directions. The FPN outputs play a crucial role in this 

process, offering tailored information for generating RoIs. 

 

2.8 Image Segmentation and Loss Function 

The RoIAlign-generated feature maps were subsequently 

processed through fully convolutional network. The 

utilization of fully convolutional network was threefold, 

encompassing classification, bounding box regression and 

coordination. Conversely, applying fully convolutional 

network was dedicated to segmenting individual instances of 

green peppers. The classification task involved feeding the 

outputs from the fully connected network into a Softmax 

layer, thereby obtaining the classification probabilities. 

Simultaneously, the convolutional layers were employed for 

the intricate instance segmentation process. The training of 

the network entailed the establishment of a loss function, 

which quantified the disparities in the network prediction. 

Assuming 𝑃𝑐𝑙𝑎𝑠𝑠   , 𝑃𝑏𝑏𝑜𝑥 , and 𝑃𝑚𝑎𝑠𝑘  represent the 

predicted class probabilities, bounding box coordinates, and 

mask predictions, respectively, and 𝑇𝑐𝑙𝑎𝑠𝑠 , 𝑇𝑏𝑏𝑜𝑥  , and 

𝑇𝑚𝑎𝑠𝑘 represent the corresponding values, the loss function 

can be written as equations 5,6 and 7 

 

Classification Loss (Cross-Entropy): 

 𝐿𝑐𝑙𝑎𝑠𝑠 = −
1

𝑁𝑟𝑜𝑖
∑ ∑ 𝑇𝑐𝑙𝑎𝑠𝑠,𝑖,𝑐

𝐶
𝑐=1 log(𝑃𝑐𝑙𝑎𝑠𝑠,𝑖,𝑐)

𝑁𝑟𝑜𝑖
𝑖=1      (5)  

Bounding Box Regression Loss (Smooth L1): 

 𝐿𝑏𝑏𝑜𝑥 =
1

𝑁𝑟𝑜𝑖
∑ ∑ 𝑠𝑚𝑜𝑜𝑡ℎ𝐿1(𝑃𝑏𝑏𝑜𝑥,𝑖,𝑗 −𝑗∈{𝑥,𝑦,𝑤,ℎ}

𝑁𝑟𝑜𝑖
𝑖=1

𝑇𝑏𝑏𝑜𝑥,𝑖,𝑗)                                      (6)     

 

Mask Segmentation Loss (Binary Cross-Entropy): 

 𝐿𝑚𝑎𝑠𝑘 =

−
1

𝑁𝑟𝑜𝑖
∑ ∑ [𝑇𝑚𝑎𝑠𝑘,𝑖,𝑝 log (𝜎(𝑃𝑚𝑎𝑠𝑘,𝑖,𝑝)) + (1 −

(𝐻)(𝑊)
𝑝=1

𝑁𝑟𝑜𝑖
𝑖=1

𝑇𝑚𝑎𝑠𝑘,𝑖,𝑝)log (1 − 𝜎(𝑃𝑚𝑎𝑠𝑘,𝑖,𝑝))]                   (7)  

 

𝑁𝑟𝑜𝑖denotes the count of regions of interest (RoI), C signifies 

the number of distinct classes, and Hand W corresponds to 

the height and width of the precited mask, respectively. 

Additionally, σ represents the sigmoid function. 

Comprehensive loss is formulated as the cumulative sum of 

individual losses, incorporating potential weighting 

coefficients is presented in equation 8. 

Total Loss: 

 𝐿𝑡𝑜𝑡𝑎𝑙 = 𝜆𝑐𝑙𝑎𝑠𝑠𝐿𝑐𝑙𝑎𝑠𝑠+𝜆𝑏𝑏𝑜𝑥𝐿𝑏𝑏𝑜𝑥+𝜆𝑚𝑎𝑠𝑘𝐿𝑚𝑎𝑠𝑘        (8)                            

It is noteworthy that the user has the flexibility to fine-tune 

the weighting coefficients (𝜆𝑐𝑙𝑎𝑠𝑠 ,  𝜆𝑏𝑏𝑜𝑥 , 𝜆𝑚𝑎𝑠𝑘) based on 

the relative significance of each constituent in the specific 

context of their application. This flexibility allows for the 

customization of the loss function to best align with the task's 

prioritized aspects.       

                                                                                                                   

2.9 Edge Detection 

Edge detection is a fundamental technique in computer 

vision and image processing that aims to identify boundaries 

and transitions within images, highlighting regions were 

intensity or color changes sharply. These boundaries 

represent the contours or edges between distinct objects or 

structures in the visual content. The primary objective of 

edge detection is to enhance the visibility of these essential 

features, enabling subsequent analysis, segmentation, and 

recognition tasks in computer vision applications. Various 

algorithms are employed for edge detection, each with their 

approach and characteristics. Popular methods include the 

Sobel and Prewitt operators, which emphasize gradient 

changes in horizontal and vertical directions, and the Canny 

edge detector, known for its multi-stage process that 

minimizes false positives. Other techniques, such as the 

Laplacian of Gaussian (LoG) and Kirsch operator, leverage 

convolution and mathematical operations to identify edges 

based on image intensity variations. Edge detection is a 

critical step in image processing pipelines, serving as a 

foundation for tasks like object recognition, image 

segmentation, and feature extraction. Its application is 

widespread in fields such as medical imaging, autonomous 

vehicles, surveillance, and industrial quality control, where 

accurate delineation of objects and structures within images 

is essential for robust and precise computer vision analyses. 

 

2.10 Edge Detection Algorithm 

Edge detection algorithms are essential components in 

computer vision, focusing on identifying abrupt variations in 

image intensity. The Canny edge detector, a prominent 

method, employs gradient calculation through convolution 

filters, emphasizing both horizontal and vertical changes. 

Subsequent non-maximum suppression isolates local 

maxima, and hysteresis-based edge tracking discerns solid 

and weak edges, producing a binary edge map delineating 

structural boundaries. Other methodologies, including Sobel 

and Prewitt operators, utilize gradient information to 

accentuate directional changes. These algorithms play a 

crucial role in image processing tasks, such as object 

recognition and segmentation, where accurate demarcation 

of object boundaries is imperative. By enhancing the 

visibility of significant transitions in visual data, edge 

detection algorithms contribute significantly to feature 

extraction and pattern recognition within diverse computer 

vision applications. The following enumeration delineates 

noteworthy edge-detection algorithms 

Roberts – Roberts Cross edge detection is a simple and 

computationally efficient method for detecting edges in 

images. It involves convolving the image with a pair of 2x2 

convolution kernels[11]. The Roberts Cross operator 

equations can be written as equations 9 and 10 

𝐺𝑥 = [
1 0
0 −1

] ∗ 𝐼                               (9) 



𝐺𝑦 = [
0 1

−1 0
] ∗ 𝐼                              (10)  

  

Where: 𝐼 is the input image , * denotes the convolutional 

operation.   

The resulting gradient images, 𝐺𝑥  and 𝐺𝑦 , capture 

intensity changes in the horizontal and vertical directions, 

respectively. The gradient magnitude 𝐺  at each pixel is 

calculated using the formula: 

  

𝐺 = √𝐺𝑥2 + 𝐺𝑦2                              (11) 

 

Sobel – Sobel edge detection is a widely used method in 

computer vision for highlighting edges in an image by 

emphasizing changes in intensity in both the horizontal and 

vertical directions[12]. The Sobel operator involves 

convolving the image with 3x3 kernels, one for detecting 

changes in intensity in the horizontal direction 𝐺𝑥 and the 

other for the vertical direction 𝐺𝑦 . The resulting gradient 

images, 𝐺𝑥  and 𝐺𝑦 , are combined to obtain each pixel's 

gradient magnitude 𝐺 and direction 𝜃, The Sobel operator 

can be written as equations 12, 13, 14 and 15 

 

𝐺𝑥 =  [
−1 0 1
−2 0 2
−1 0 1

] ∗ 𝐼                          (12) 

 

 

𝐺𝑦 =  [
−1 −2 −1
0 0 0
1 2 1

] ∗ 𝐼                       (13) 

 

𝐺 = √𝐺𝑥2 + 𝐺𝑦2                      (14) 
and the gradient direction 𝜃 is given by: 

𝜃 = arctan (
𝐺𝑦

𝐺𝑥
)                               (15)   

The Sobel edge detection algorithm effectively highlights 

edges by accentuating intensity changes in the image along 

both the horizontal and vertical axes.    

 

Prewitt – Prewitt edge detection is a method commonly 

employed in image processing for highlighting edges by 

emphasizing changes in intensity along both horizontal and 

vertical directions. Proposed by Judith M. S. Prewitt[13], this 

technique employs convolution with Prewitt kernels to 

calculate image gradients, offering a simplified alternative to 

more complex operators. The Prewitt operator equations for 

horizontal 𝐺𝑥 and 𝐺𝑦  gradients are represented by 

equations 16 and 17 

𝐺𝑥 =  [
−1 0 1
−1 0 1
−1 0 1

] ∗ 𝐼                          (16) 

 

 

𝐺𝑦 =  [
−1 −1 −1
0 0 0
1 1 1

] ∗ 𝐼                (17) 

 

here,  𝐼  represents the input image, and ∗ denotes the 

convolution operation. The gradient magnitude 𝐺  at each 

pixel is computed as 𝐺 = √𝐺𝑥2 + 𝐺𝑦2 , providing a 

measure of intensity changes in the image. Prewitt edge 

detection proves valuable for its simplicity and efficiency in 

capturing edge information along multiple directions, 

contributing to applications such as image segmentation and 

feature extraction in computer vision tasks. 

Laplacian – The Laplace operator ∇2 is a mathematical 

operator commonly utilized for edge detection in image 

processing. It is applied through convolution with a 

Laplacian kernel, represented by specific convolution 

matrices[14]. The 3x3 Laplacian kernel can be written as 

equations 18 and 19  

     

∇2= [
0 1 0
1 −4 1
0 1 0

] ∗ 𝐼                                       (18)                                                                                                  

                                   
Here, the central element (-4) represents the weight assigned 

to the pixel being processed, while the neighboring elements 

(1) indicate the weights of surrounding pixels. For the 5x5 

Laplacian kernel, the formulation is:  
 

∇2= 

[
 
 
 
 
0 0      1  0 0
0 1      2  1 0
1
0
0

2
1
0

−16
2
1

2
1
0

1
0
0]
 
 
 
 

∗ 𝐼              (19)   

 

In this case, the central element (-16) represents the weight 

assigned to the pixel being processed, while the surrounding 

elements (1 or 2) denote the weights of neighboring pixels. 

The convolution operation * is applied to the image 𝐼 , 

producing the Laplacian response. This response emphasizes 

regions where intensity changes abruptly, facilitating 

effective edge detection in image analysis and processing 

tasks. 

Canny Edge detection – Canny edge detection is a 

sophisticated image processing technique designed to 

identify and highlight edges in an image, minimizing the 

influence of noise. Proposed by J. Canny in 1986[15], this 

method involves multiple stages to achieve robust edge 

detection. The key steps include: 

Gradient Calculation: Compute the image gradient using 

convolution with Sobel filters to emphasize changes in 

intensity in the horizontal and vertical directions. 

Gradient Magnitude and Orientation: Determine the 

gradient magnitude and orientation at each pixel. 

Non-Maximum Suppression: Suppress non-maximum 

gradient values to retain only local maxima along the edges. 

Edge Tracking by Hysteresis: Establish high and low 

thresholds for gradient magnitudes, identify pixels with 

gradient magnitudes above the high threshold as strong edge 

points, connect weak edge points to strong edge points if they 

are part of the same edge structure. 

Mathematically, the gradient magnitude 𝐺 is calculated as 

𝐺 = √𝐺𝑥2 + 𝐺𝑦2 , where 𝐺𝑥 and 𝐺𝑦  are the horizontal 

and vertical gradients. The gradient orientation 𝜃  is 

determined as 𝜃 = arctan (
𝐺𝑦

𝐺𝑥
). The Canny edge detection 

equation incorporates these principles, providing an effective 

approach for accurate edge localization and noise reduction 

in various computer vision applications.   
                                         



2.11 Structural Similarity (SSIM) 

In the comparative analysis of two images facilitated by 

a software system, the Structural Similarity Index (SSIM) 

principles are applied to ensure a comprehensive evaluation 

that transcends mere correlation coefficients. The first step 

involves mitigating the impact of brightness on structural 

information. Luminance information is subtracted during the 

calculation of structural information, and subsequently, the 

mean value of the image is subtracted. This initial adjustment 

aims to preserve the inherent structural characteristics of the 

fruits depicted in the images. Subsequently, the structural 

information is further refined to eliminate the influence of 

image contrast. Normalization of the variance of the images 

is undertaken during the computation of structural details. 

This step ensures that the structural features are assessed 

independently of variations in image contrast, contributing 

to a more precise analysis. The final phase involves the 

comprehensive calculation of structural information, 

incorporating the outcomes of brightness and contrast 

comparisons[16]. The conventional approach of calculating 

correlation coefficients is augmented to account for the 

nuanced impact of brightness and contrast on image 

dissimilarity. The overarching workflow of this SSIM 

process is delineated in Fig 7, emphasizing the sequential 

application of these principles in achieving a holistic 

evaluation of image similarity. By systematically addressing 

the influence of luminance and contrast, the SSIM 

methodology ensures a refined and nuanced assessment, 

offering a more accurate depiction of the similarity between 

two images within the software system. 

 

The Structural Similarity Index (SSIM) comprises three 

constituent sub-indices: the luminance index, contrast index, 

and structure index. Luminance, within the context of the 

SSIM index, pertains to the intensity of the object portrayed 

in the image, delineated by pixel values. The luminance 

index, therefore, serves as a metric for capturing the inherent 

brightness characteristics of the recorded object within the 

image. The contrast index encapsulates the discernible 

difference in luminance or the extent of luminance variation 

across the image. This index provides a quantitative measure 

of the variability in luminance values, offering insights into 

the image's overall contrast properties. As a component of 

the SSIM, the structure index reflects the Pearson correlation 

of luminance between two images, namely, image X and 

image Y. This index evaluates the similarity in the structural 

patterns of luminance across corresponding points in the 

images. The comparison functions for luminance, contrast, 

and structure at each point in the images are expressed 

through equations 20, 21, and 22, respectively. These 

equations encapsulate the mathematical formulations 

employed to quantify the luminance intensity, contrast 

variation, and structural correlation, forming the basis for a 

comprehensive evaluation of image similarity within the 

SSIM framework. 

Luminance:𝑙(𝑥, 𝑦) =  
2𝜇𝑥𝜇𝑦+𝐶1

𝜇𝑥
2+𝜇𝑦

2+𝐶1
                   (20) 

 

Contrast: 𝑐(𝑥, 𝑦) =
2𝜎𝑥𝜎𝑦+𝐶2

𝜎𝑥
2+𝜎𝑦

2+𝐶2
                     (21) 

 

Structure: 𝑠(𝑥, 𝑦) =
𝜎𝑥𝑦+𝐶3

𝜎𝑥𝜎𝑦+𝐶3
                      (22) 

 

In the Structural Similarity Index (SSIM) formulation, 𝜇𝑥 

and 𝜇𝑦  represent the local means, 𝜎𝑥  and 𝜎𝑦  denote the 

standard deviations, and 𝜎𝑥𝑦 signifies the cross-covariance 

between image 𝑋 and image 𝑌. The equations 23, 24, and 

25 express the mathematical definitions of 𝜇𝑥, 𝜎𝑥, and 𝜎𝑥𝑦. 

To ensure computational stability and prevent division by 

minute denominators, 𝐶1 , 𝐶2 , and 𝐶3  function as 

regularization constants with diminutive values. The 

introduction of these constants is imperative for mitigating 

potential numerical instabilities in SSIM calculations, 

thereby reinforcing precision and robustness in diverse 

image-processing contexts. 

 

𝜇𝑥 =
1

𝑁
∑ 𝑥𝑖

𝑁
𝑖=1                                 (22) 

 

𝜎𝑥 = ((
1

𝑁
∑ (𝑥𝑖 − 𝜇𝑥)

2𝑁
𝑖=1 )

1

2                      (23) 

 

𝜎𝑥𝑦 =
1

𝑁
∑ (𝑥𝑖 − 𝜇𝑥)(𝑦𝑖−𝜇𝑦)

𝑁
𝑖=1                    (24) 

 

The index 𝑖 represents all points within a localized region. 

At the same time, 𝑁  signifies the total number of points 

encompassed by this area, including the evaluating point and 

its 𝑁  neighboring points. The configuration of the local 

area is adaptable, allowing for adjustments in shape and size 

through the selection of filter types, such as the Gaussian 

filter and filter size. Ultimately, the Structural Similarity 

Index (SSIM) integrates three sub-functions, culminating in 

its final formulation as shown in equations 25 and 26. These 

equations encapsulate the SSIM index's mathematical 

representation, a composite measure derived from the 

interplay of these sub-functions. 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) = [𝑙(𝑥, 𝑦)]𝛼[𝑐(𝑥, 𝑦)]𝛽[𝑠(𝑥, 𝑦)]𝛾        (25) 

 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =
(2𝜇𝑥𝜇𝑦+𝐶1)(2𝜎𝑥𝑦+𝐶2)

(𝜇𝑥
2+𝜇𝑦

2+𝐶1)(𝜎𝑥
2+𝜎𝑦

2+𝐶2)
                (26) 

 

An SSIM index attaining 1 signifies perfect concordance 

between two images, whereas an SSIM index below 1 

indicates a disparity between the compared images. The 

overall SSIM and its sub-indices for the compared images 

are computed as the mean values of their respective index 

maps. This analytical approach allows for a quantitative 

assessment of image similarity, with 1 indicating a complete 

match and values lower than one indicating deviations or 

dissimilarities between the compared images. Using mean 

values in the computation contributes to a comprehensive 

and representative evaluation of the images' structural, 

luminance, and contrast attributes. 

Fig. 8  SSIM structure workflow 

 



2.12 Validation and Analysis 

The F1 score, a pivotal metric in image processing, is 

prominently employed in binary classification scenarios 

such as object detection, image segmentation, and 

classification tasks. It amalgamates the principles of 

precision and recall, offering a comprehensive assessment of 

a model's efficacy in delineating and identifying objects 

within images. In image processing, particularly in tasks 

involving segmentation or object detection, precision 

denotes the accuracy with which the model correctly 

identifies relevant regions. At the same time, recall measures 

the model's ability to encompass all pertinent instances. 

Precision is the ratio of accurate optimistic predictions to the 

sum of true and false positives. At the same time, recall is 

expressed as the ratio of true positives to the sum of true 

positives and false negatives. The F1 score, the harmonic 

mean of precision and recall, is a harmonized metric that 

encapsulates the impact of false positives and false negatives. 

Its formula delineates a balanced evaluation considering both 

precision and recall. Symbolically, the F1 score equations 

are represented as equation 27 to 29  

 

𝑃 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
                   (27) 

 

𝑅 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
                  (28) 

 

𝐹1 = 2
𝑇𝑢𝑟𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
                (29) 

 

3 Experimental 

3.1 Camera Experimental 

The experimental procedures are organized into phases: 

• Evaluation of the angular orientation of RGB camera 

during this phase, an isolated evaluation of the RGB 

camera will be conducted , determining the threshold at 

which data collection from the object commences. In the 

experimental evaluation, there is a necessitated 

adjustment in camera orientation due to the off-centered 

placement of the RGB camera lens within the camera 

structure and the angular orientation of each camera is 

systematically varied within the range of 0 to 90 degrees. 

Alterations are implemented at increments of 5 degrees, 

guided by Equation 1, wherein the values 

𝛼𝐵and 𝛼𝐶  will consistently share the same degree values 

throughout the testing process. 

• Assessment of the maximum distance achievable by 

each camera for data collection 𝛾𝑖 , ensuring that the 

camera does not capture images of other cameras within 

its field of view. The experimental assessment 

encompasses distances ranging from 15 to 30 

centimeters. 

• The conclusive phase of the experiment involves 

utilizing the values of α and 𝛾𝑖 to determine the optimal 

shooting distance, denoted as  𝜇𝑖  . This optimization 

considers both the shooting distance and the angles of 

both camera types. During image capture, it is 

imperative to ensure no overlap between the field of 

view of one camera type and another, maintaining 

distinct visibility for each camera type. 

 

3.2 Mask R-CNN + SSIM 

The subsequent phase of the study involves practical 

assessments utilizing an authentic camera within a 

greenhouse environment to acquire empirical data for further 

investigation. Data collection transpired on the dates 11/29, 

11/30, and 12/1. The initial step encompassed the systematic 

recording of data as Fig 4. This involved capturing images in 

four RGB types (a-d) and four IR types (e-h), each associated 

with specific locations as shown in Fig 9 and green pepper 

540 images were recorded for each type, resulting in 4320 

images. Furthermore, each image type was subdivided into 

three sets: 1) training set, 2) validating set, and 3) testing set. 

The experimental procedures are methodically organized 

into distinct phases. 

• The initial phase of the study involved data annotation 

through the utilization of labelme. Subsequently, the 

annotated data was employed to assess the accuracy of 

the Mask R-CNN system algorithm. This iterative 

process facilitated evaluating the algorithm's 

performance in processing annotated data, providing 

insights into its efficacy and precision in handling the 

specific task. The systematic data annotation through 

labelme was a foundational step in preparing the dataset 

for algorithmic testing and performance evaluation. 

• In the second procedural step, images obtained from the 

segmentation process in step 1 were utilized for testing 

purposes. Specifically, the acquired data were employed 

in two distinct scenarios: first, employing infrared (IR) 

images as the testing dataset for models trained with red-

green-blue (RGB) images, and second, using RGB 

images as the testing dataset for models trained with 

infrared (IR) images. This methodology aimed to assess 

the efficacy of the segmentation algorithm in identifying 

green peppers under varying conditions, specifically 

evaluating its ability to generalize across different 

imaging modalities and ascertain the robustness of the 

model in pepper identification. 

• In the third procedural step, after obtaining images from 

the initial segmentation step, an analytical procedure 

was employed utilizing the Structural Similarity Index 

(SSIM) method. This method entailed a comparative 

analysis akin to the approach in step 2, involving the 

juxtaposition of infrared (IR) images with red-green-

blue (RGB) images and vice versa. The objective was to 

ascertain the discernibility of green peppers through the 

SSIM method, thereby evaluating the effectiveness of 

the segmentation process in distinguishing these peppers 

based on variations in imaging modalities. This 

analytical step contributed to the comprehensive 

assessment of the algorithm's performance in 

identifying green peppers across different image 

representations. 

• In the fourth procedural step, this process resembles step 

3, albeit explicitly focusing on a designated point of 

interest. Unlike the comprehensive image analysis in the 

prior step, the comparison is selectively confined to the 

region delineated by the bounding box. This targeted 

approach aims to streamline the computational 

workload by restricting the assessment to solely those 

images within the specified area. By doing so, the intent 

is to mitigate data volume, enhance computational 

efficiency, and diminish extraneous noise that might 



arise from considering the entire image, thereby refining 

the precision of the evaluation. 

 

3.3 Mask R-CNN + Edge Detection + SSIM 

Initial Method 

• In the initial phase, the procedure involves the 

demarcation of object boundaries and the application of 

a masking technique to isolate the object box. The 

forthcoming experimentation will build upon the data 

acquired through the preceding methodology, which 

incorporates Mask R-CNN and SSIM. Specifically, we 

intend to augment this approach by integrating an Edge 

Detection step before the SSIM process, as delineated in 

Figure 10.The Edge Detection procedure encompasses 

five distinct methods, as elucidated in the antecedent 

chapter. These methods comprise Robert, Sobel, Prewitt, 

Laplacian, and Canny Edge Detection. Subsequently, 

the highest values obtained from the three most effective 

methods will be utilized in the ensuing process. 

 

 

Secondary Method 

• In the second step, these top-performing methods from 

the first step will be reapplied in the Edge Detection 

process after initial noise reduction. This phase involves 

a nuanced comparison with the Mask R-CNN step. 

Unlike the conventional approach in Mask R-CNN, 

which consists in masking objects and applying label 

painting, the modified procedure in this step employs 

the Mask and label without painting over the object. The 

image size is adjusted uniformly, and a crop operation is 

executed to retain only the desired objects, as shown in 

Fig 11. Subsequently, the Edge Detection process is 

initiated, followed by the SSIM evaluation, as shown in 

Fig 12. This systematic approach aims to capitalize on 

the superior performance of selected Edge Detection 

techniques while incorporating insights from the initial 

noise reduction steps, thereby refining the overall image 

processing methodology. 

 

 

 

4 Results 

4.1 Camera Results 

• The experimental findings indicate that photographing 

at various angles before and after the side-switching 

operation proved unproblematic within the range of 0 to 

75 degrees. However, deviations arose when the angle 

exceeded 80 degrees, leading to the object's image 

extending beyond the frame boundaries. 

• Concerning the range of cameras capable of initiating 

object capture image, this capability extends from 𝛾𝑖 = 

0 to 30 cm within the camera's plane at 0 degrees. This 

ensures unimpeded photographing without including 

another camera type within the frame of the image. 

• The first two experiments were amalgamated and tested 

collectively in the concluding phase. The outcomes 

indicate that for the left side, with the RGB camera on 

the left and the IR camera on the right, images can be 

captured without interference from other camera types 

within the range of 𝛾𝑖  = 15.5 - 22 cm. The parameters 

α = 120° , 𝛼𝐵  and 𝛼𝐶  are set within 0-30 degrees. 

Similarly, for the right side, with the RGB camera on the 

right and the IR camera on the left, images can be taken 

without incorporating other camera types within the 

range of 𝛾𝑖   = 15.5 - 22 cm, with the same angular 

constraints. 

• Regarding 𝜇𝑖, the RGB camera exhibits no issues and 

can capture images within the 15-30 cm range. However, 

the IR camera encounters challenges when the camera-

object distance exceeds 28 cm, manifesting barrel 

distortion symptoms. The subsequent summary section 

will provide further elucidation on barrel distortion 

symptoms. 

 

Fig. 9  Data collection information setup in greenhouse 

 

Fig. 10  Initial step method overview 

 

Fig. 11  Crop Objection in bounding box 

 

Fig. 12  Secondary step method overview 

 



4.2 Mask R-CNN + SSIM Results 

• In the initial phase, employing the Labelme annotation 

method and testing with the Mask R-CNN algorithm on 

red-green-blue (RGB) images yielded an annotation 

accuracy of 0.976. In contrast, a corresponding accuracy 

of 0.989 was achieved when testing on infrared (IR) 

images. This quantitative assessment reflects the 

algorithm's proficiency in accurately identifying and 

annotating regions of interest within RGB and IR 

images, with higher values indicating greater precision 

in the annotation process. The numeric outcomes 

provide quantitative insights into the algorithm's 

performance during the image annotation stage, 

contributing to the overall evaluation of its efficacy 

under different imaging conditions. 

• During the second step, employing infrared (IR) images 

as testing data for red-green-blue (RGB) models, and 

vice versa, yielded outcomes with a discernible absence 

of accuracy, registering a score of 0. This denotes a need 

for more precision in the models' ability to correctly 

classify and identify objects when confronted with 

testing data from an alternate imaging modality. The 

null accuracy values underscore the challenges and 

limitations encountered when attempting cross-modal 

testing, signifying the necessity for further refinement 

and adaptation of the models to enhance their capacity 

for generalized object recognition across different 

spectral domains. 

• In the third step, the introduction of the Structural 

Similarity Index (SSIM) into the image comparison 

methodology resulted in SSIM scores ranging 

approximately between 0.20 and 0.25 when comparing 

infrared (IR) and red-green-blue (RGB) images. This 

quantitative assessment reflects the degree of structural 

similarity between the two modalities, with the SSIM 

scores measuring the likeness in structural patterns. The 

observed scores in this range suggest a moderate level 

of similarity, indicating that the structural characteristics 

of the IR and RGB images exhibit discernible 

differences while still possessing certain standard 

features, as quantified by the SSIM. 

• In the fourth step, following a methodology analogous 

to the third step, the emphasis was explicitly directed 

toward a designated object within a bounding box. The 

application of the Structural Similarity Index (SSIM) to 

compare infrared (IR) and red-green-blue (RGB) 

images, limited to this defined region, yielded SSIM 

scores ranging approximately between 0.4 and 0.45. 

This targeted comparison within the bounding box 

indicates a moderate increase in the SSIM scores 

compared to the comprehensive image assessment in the 

third step, suggesting a higher level of structural 

similarity when focusing solely on the specified object 

within the bounding box. 

 

4.3 Mask R-CNN + Edge Detection + SSIM Results 

• Upon completion of the initial testing phase, the 

obtained results are as follows: Canny Edge Detection, 

Roberts, Laplacian 3x3, Sobel, and Laplacian 5x5. The 

corresponding Structural Similarity Index (SSIM) 

scores, arranged in descending order, are 0.577, 0.552, 

0.551, 0.44, and 0.269. These results are visually 

presented in Fig 13, showcasing the highest scores. 

Notably, the application of Edge Detection in this 

method yielded an SSIM score of 0.577 

 

• Based on the outcomes of the initial experiment, three 

methods emerged with the highest Structural Similarity 

Index (SSIM) scores: Canny Edge Detection, Roberts, 

and Laplacian 3x3, scoring 0.577, 0.552, and 0.551, 

respectively. In the second step, these top-performing 

methods from the first step will be reapplied in the Edge 

Detection process after initial noise reduction. This 

phase involves a nuanced comparison with the Mask R-

CNN step. Unlike the conventional approach in Mask 

R-CNN, which consists in masking objects and applying 

label painting, the modified procedure in this step 

employs the Mask and label without painting over the 

object and the outcomes derived from the second 

experiment assess the performance metrics associated 

with the recently introduced Mask R-CNN. Within the 

RGB and IR cropping segments, the acquired F1 scores 

stand at 0.7894 and 0.9815, respectively. Furthermore, 

applying the new method for edge detection results in 

images, as exemplified in Fig 14. In contrast, the SSIM 

segment yields analogous scores of 0.7894 and 0.9815. 

Notably, the recorded scores predominantly concentrate 

within the range of 0.790 to 0.810., thereby 

encapsulating a substantial portion of the experimental 

outcomes, as shown in Fig 15. 

 

Fig. 13  SSIM score comparison with Edge detection methods 

 

Fig. 14 RGB and IR with Canny Edge Detection , from left to 

right are capture from the left side, capture from the right 

side without a foliage, capture from the right with a 

foliage of 10-30%, capture from the right with a foliage  

more than 30%. 

 



 

5 Summary 

5.1 Camera 

The experimental findings suggest that the optimal 

shooting angle for capturing images without other cameras 

in the frame is 30 degrees. Maintaining a distance between 

cameras ranging from 15.5 to 22 cm is recommended, with a 

preference for the lower limit of 15.5 cm for space efficiency 

in potential installations on an automated harvesting robot. 

The permissible range for camera-object distance extends 

from 15 to 30 cm without encountering issues in the RGB 

camera. However, in the case of IR cameras, complications 

arise beyond 28 cm, leading to a phenomenon known as 

barrel distortion Fig 16 , akin to a fisheye lens effect, as 

shown in Fig 17[17]. Commonly associated with wide-angle 

lenses, this distortion can be rectified through algorithms, 

such as the Correction of Barrel Distortion in Fisheye Lens 

Images Using Image-Based Estimation of Distortion 

Parameters by M. Lee[18] or T. Hwan Kim's An Efficient 

Barrel Distortion Correction Processor for Bayer Pattern 

Images[19]. However, due to the significantly lower 

resolution of the IR camera 382x288 pixels[20] compared to 

the RGB camera 1280x800[21], image editing complexities 

arise in the IR domain. Consequently, employing the IR 

camera within a shooting distance of less than 28 cm is 

recommended for expeditious and straightforward resolution, 

thereby mitigating challenges and noise during subsequent 

image processing. 

 

 

5.2 Mask R-CNN + SSIM 

Upon conducting testing, several observations emerged 

regarding the efficacy of the methodology. In the second 

method, the interchangeability of infrared (IR) and red-

green-blue (RGB) images for testing proved unfeasible due 

to numerous constraints and image-specific conditions. 

However, in the third step, where the Structural Similarity 

Index (SSIM) was incorporated for image comparison, some 

degree of success was achieved despite the relatively low 

scores. Notably, focusing exclusively on the region of 

interest within a bounding box in the fourth step yielded 

favorable outcomes. The SSIM score exhibited a significant 

improvement, escalating from 0.25 to 0.45. This progression 

underscores the pivotal role of noise reduction in enhancing 

SSIM scores, emphasizing the importance of concentrating 

solely on the target object within the bounding box for 

optimal results, particularly when assessing structural 

similarities in images. 

 

5.3 Mask R-CNN + Edge Detection + SSIM 

Both experiments revealed that the optimal approach 

involves mitigating image noise before SSIM-based 

comparisons. Highly detailed RGB images exhibit a modest 

correctness probability of merely 0.7984. In contrast, IR 

images, characterized by reduced image intricacies, achieve 

a notably higher score of 0.9815, surpassing the RGB score 

of 0.1831. Despite the superior IR score, a notable issue 

arises during the edge detection phase: the images acquired 

from the IR camera struggle to detect leaves due to 

insufficient image details. This contrasts RGB images that 

boast discernible leaf lines, contributing to object coverage. 

Such intricacies may pose future challenges, particularly if 

objects become conglomerated and need clear demarcation. 

 

6 Conclusions 

This research is focused on advancing methodologies for 

effectively detecting green peppers, particularly within the 

controlled environment of a greenhouse. A comprehensive 

analysis of green peppers grown in the greenhouse 

environment has revealed various challenges that necessitate 

nuanced solutions. One of the primary challenges identified 

is the varied positioning of green pepper fruits throughout 

the plant. Given that green pepper plants can produce fruit 

across the entirety of the plant, the resulting fruits exhibit a 

range of heights, some elevated and others at lower levels. 

Fig. 15  Secondary step method SSIM score 

 

Fig. 16 Barrel distortion of IR image when range distance 

exceeds 28 cm 

 

Fig. 17  Image of Brick wall captured with wide angle lens 

 



This inherent variability in fruit positioning introduces 

complexities in subsequent detection processes. Moreover, 

the abundance of leaves on green pepper plants and their 

dense arrangement further complicates distinguishing 

individual green peppers from the foliage. The inherent 

tendency of green pepper fruits to grow nearby, forming 

clusters, poses an additional layer of difficulty in achieving 

accurate and precise detection. The challenge is exacerbated 

by the fact that individual fruits must be isolated during the 

data collection, preventing them from being clustered with 

other fruits. The research underscores the importance of 

meticulous data collection to address these challenges. The 

optimal approach involves maintaining 25cm from the object 

of interest and tilting the camera at a 30-degree angle. These 

parameters ensure the collected data is well-positioned, 

avoiding clustering issues and enabling accurate separation 

of individual green peppers from the surrounding foliage. 

However, even with careful data collection, challenges 

persist in accurately discerning the color of green peppers, 

leaves, and fruits, mainly when relying solely on a 

conventional RGB camera. The similarity in color poses 

difficulties in differentiation. As a potential solution, the 

research explores using an infrared (IR) camera, which 

exhibits promise in classification but encounters challenges 

related to accuracy, particularly in cases where the 

temperature of the fruits and leaves is similar. 

  The study employs the Mask R-CNN process to analyze 

and detect green peppers, achieving commendable accuracy 

with scores of 0.976 and 0.989 for different process aspects. 

However, the subsequent structural similarity index (SSIM) 

process presents distinct challenges. Despite the RGB image 

scoring marginally lower 0.1831 than the IR image, it 

encounters more intricate challenges. The high resolution of 

the RGB image facilitates the differentiation of fine details 

in the leaves, which may obscure the green peppers. 

Conversely, the images obtained from the IR camera struggle 

to distinguish leaves that may obscure the green pepper fruits. 

Practical challenges also extend to the physical setup within 

the greenhouse. Walkways composed of dirt necessitate 

frequent adjustments to the camera position to ensure a level 

and consistent perspective. The computational aspect of the 

process introduces another layer of complexity, with the 

calculation process involving numerous steps and substantial 

processing time. For instance, calculating a single result 

requires up to 16 hours, underscoring the need for more 

efficient computational methodologies for practical 

applications. In conclusion, the research highlights the 

multifaceted challenges of detecting green peppers in a 

greenhouse environment. Each aspect requires careful 

consideration and innovative solutions, from nuanced data 

collection to color differentiation and computational 

efficiency. Addressing these challenges is pivotal for 

practically implementing the methodology in real-world 

scenarios, were efficiency and accuracy. 
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