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1, Introduction -History of Quantum
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Thermal Counter Flow and
Superfiuid Turbulence

Thermal counter flow in the temperature gradient

Ahove a
critical velocity

Superfiuid Turbulence is realized in the
thermal counter flow (By Vinen, 1957) /




Superfiuid Turbulence : Tangled
State of Quantum Vortices

Vortex tangle in superfluid turbulence ‘
Quantized Vortex

All Vortices have a same circulation
K=¢v eds=h/m.

*\/ortices can be stable as topological
defects (not dissipated).

*\/ortices have very thin cores (~A for
‘He) : Vortex filament model is
realistic
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What Is The Relation Between
Classical and Superfiuid
Turbulence?

Thermal counter flow had been
main method to create superfluid
turbulence until 1990's

l

Thermal counter flow has no
analogy with classical fluid
dynamics

The relation hetween superfluid and classical
turbulence had been one great mystery. /




Motor
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Opening a New Stage in the Study of
Superfluid Turbulence

J. Maurer and P. Tabeling, Europhys. Lett. 43 (1), 29 (1998)

e

Pressure A

measurement

I'>16K

Two-counter rotating disks

Similar method to create classical
turbulence : It becomes possible to
discuss the relation hetween
superfluid and classical turbulence
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E(f) [a. u. ]

Energy Spectrum of Superfiuid
Turbulence

J. Maurer and P. Tabeling, Europhys. Lett. 43 (1), 29 (1998)

Energy spectrum of superfluid turbulence
106

Even below the superfluid critical
temperature, Kolmogorov -5/3 law

-5/3

g was observed.
102 |

Similarity between
o superfluid and classical
- turbulence was

10! 162 103 P
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Kolmogorov Law : Statistical Law of
Classical Turbulence

Homogeneous, isotropic, incompressible and steady turbulence
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containing range

In the energy-containing
range, energy is injected
to system at scale /,
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Kolmogorov Law : Statistical Law of
Classical Turbulence

Homogeneous, isotropic, incompressible and steady turbulence

p 1leE In the inertial range, the
scale of energy becomes
small without being

g dissipated, supporting
| Kolmogorov energy
| spectrum E(k).
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Kolmogorov Law : Statistical Law of

Classical Turbulence

Homogeneous, isotropic, incompressible and steady turbulence
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Energy-dissipative range

In the energy-dissipative
range, energy Is
dissipated by the viscosity
at the Kolmogorov length




Kolmogorov Law : Statistical Law of

Classical Turbulence

Homogeneous, isotropic, incompressible and steady turbulence

p 49
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Energy- Inertial-range Energy-dissipative range

containing range

€ . energy Injection rate

€ . energy transportation
rate

[1(k) : energy flux from
large to small &

€ . energy dissipation rate
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What Is The Relation Between
Classical and Quantum Turbulence?

Viscous normal fluid + Quantized vortices in inviscid superfluid

‘ Both are coupled together by the friction between
normal fluid and quantized vortices (mutual friction)
and hehave like a conventional fluid

Dependence of p, & p,, on the temperature

1 !

Is there the similarity between
classical turbulence and
superfiuid turbulence without
normal fluid (Quantum
turbulence)?
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2, Motivation of Studying Quantum
Turbulence

Eddies in classical turbulence

Numerical simulation of NSE (by Kida et Satellite Himawari




Richardson Cascade of Eddies in
Classical Turbulence

Energy-containing range :
D generation of large eddies
QQODD O Inertial-range
Large eddies are broken up to

QDOOTONDLOO smaller ones in the inertial range :
00O OLOaoR NP IRO Richardson cascade

Energy-dissipative range

disappearance of small eddies




Eddies in Classical Turbulence

*\/orticity @ = rot v takes continuous value
*Circulation k becomes arbitrary for arbitrary path.

*Eddies are annihilated and nucleated under the
ViScosity

*Definite identification of eddies is
difficult.

*The Richardson cascade of eddies is just

conceptual (No one had seen the {

Richardson cascade before).




Quantized Vortices in Quantum
Turbulence

o Circulation k = ¢ v *ds = & /m around vortex core is quantized.
* Quantized vortex Is stable topological defect.
* Vortex core Is very thin (the order of the healing length).




Quantum Turbulence

Quantized vortices in superfluid
turbulence is definite topological defect

Quantum Turbulence may be able to clarify the
relation between the Kolmogorov law and the
Richardson cascade!




This Work

1. We study the dynamics and statistics of
guantum turbulence by numerically solving the
Gross-Pitaevskil equation (with small-scale
dissipation).

2. We study the similarity of both decaying and
steady (forced) turbulence with classical
turbulence.
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Model of Gross-Pitaevskii Equation

Numerical simulation of the Gross-Pitaevskii equation

Many boson system

= /dw\iﬁ(w,t)[—VQ FV(@) — ot L, )2 1)

i%@(az,t) = [-V2+V(x) — p+ g (x, ) (x, )]V (x, t)

~

U(x,t) : Field operator of bosons
1t - Chemical potential

g : Coupling constant /




Model of Gross-Pitaevskii Equation

For Bose-Einstein condensed system

®(x,t) : Macroscopic wave function of BEC

¢(x,t) : Quasiparticle fluctuation from BEC

o




Model of Gross-Pitaevskii Equation

0
ot

£ =

®(z)| explif(x)]
®(x)|? : Density of fluid

2VO(x) : Velocity of fluid
1/4/gp : Healing length

We numerically investigate

GP turhulence.

Gross-Pitaevskii equation
i ®(x,t) = [~V — p+ g|®(z,1)]*]D(z)

Quantized vortex



Introducing the Dissipation Term

\ortex reconnection

Compressible excitations of wavelength
smaller than the healing length are
created through vortex reconnections
and through the disappearance of small
vortex loops.

—Those excitations hinder the cascade

process of quantized vortices!




Introducing the Dissipation Term

To remove the compressible short-wavelength excitations,
we Introduce a small-scale dissipation term into GP equation
Fourier transformed GP equation

o® (k)
ot

_ [(kQ — 1)®(k) + % Z O (k)" (ko) P(k — k1 + kz)}

. 5

i— (k)] = [(F = @) + 5 D Dlk)" (ko) (k — by + k)|

v(k) = v0(k — 27 /&) : smaller scale dissipation than &

L



4, Numerical Results -Decaying
Turbulence-

Initial state : random phase

¢ =, /pexp(if)
p(t = 0) : uniform

0(t = 0) random in space

Initial velocity : random

l

Turbulence is created




Decaying Turbulence

vortex phase density

0<t<6

Y5=0

without dissipation

V=1

with dissipation




Decaying Turbulence

Calculating kinetic energy of vortices and compressible excitations

o / das [| ()| V()2

Kinetic energy

0 /dw {12(®)|Vo(z)}']*  div{|®(z)|VO(z)}' =0

Incompressible kinetic energy (vortex)

B = /dw {I2(2)|VO(z)}]*  rot{|®()|VO(z)}" =0

Compressible kinetic energy (compressible excitation)

Ekin = Eli{in + Eﬁin [




Log E(k,f)

Energy Spectrum of Decaying
Turbulence

Energy spectrum : E¢ = / dk E.° (k)

! * Eyin B * Eyin'h)
— e 23 -5/3
2L €=V Quantized vortices in
‘ quantum turbulence
show the similarity with
classical turbulence

4




Numerical Results -Steady

Turbulence-
Steady turbulence
| with the energy
| injection enables us
| to study detailed
| Ik statistics of quantum
o avieEl ~~L2”  turbulence.

Energy- [nertial-range Energy-dissipative range
containing range




Energy Injection As Moving Random
Potential

i—9(=,t)l5 2@, t) = =V —u+ Uz, t) + g|2(z, t)|*] @ ()

U(x) : Moving random potential

(—a')® (t—t)
2X2 2T

X, : characteristic scale of the moving
random potential

—Vortices of radius X, are nucleated

e




Steady Turbulence

Steady turbulence is realized by the competition between
energy injection and energy dissipation

Time dependence of kinetic energy at initial stage

vortex density potential 14 -
2 B (0
10 1— Bt
8 ™ Ei®
ol
.l
? _ .|h"
0 LB

Energy of vortices £, 'Is always dominant




Steady Turbulence

Steady turbulence is realized by the competition between
energy injection and energy dissipation

Time dependence of kinetic energy at steady stage

vortex density potential 20 MWMW

Lr —ED) T Ea0) | ]
— Egn ()~ Fygii()

10 .
P T W W e PO
P i e e

25 26 27 28 29 30

-

Energy of vortices £, 'Is always dominant




Flow of Energy in Steady Quantum

Turbulence

Energy-containig 270/ X0

Inertial range

e T
L0

range

Richardson
cascade

Decay of vorticesj

Nucleation of
large vortices

|
Ulx,f) !
|
|

k

Y

Formation of

sound waves ~ '
. C '

21/ g Energy—dissipative
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Energy Dissipation Rate and Energy
Flux

Energy flux T1(%) is obtained by the energy budget equation
from the GP equation.
Scale by scale energy flux I1{(%)

14 T
| |
| |
12 F * I : . .
?m‘,’:: o . LItk 1. II(k)is almost constant in the
DIRANACR R  S inertial range
* ) °e :"{0
ol | “g | 12, TI(k) in the inertial range is
PR . consistent with the energy
6 _: nertial range : i
= a

‘v\ dissipation rate €
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Energy Spectrum of Steady
Turbulence

Energy spectrum of steady turbulence

Energy spectrum shows
the Kolmogorov law again

i Inertial | oo .

e | - Similarity between
ol quantum ar]d classical
T Lescmagn) turbulence is supported!

-1 05 0 05 1 15 2
log k& \




9, Summary

1. We did the numerical simulation of quantum
turbulence by numerically solving the Gross-
Pitaevskii equation.

2. We succeeded clarifying the similarity between
classical and quantum turbulence.

3. We also clarify the flow of energy in quantum
turbulence by calculating the energy dissipation
rate and the energy flux in steady turbulence.

o~




Future Outlook of Quantum
Turbulence

Quantum mechanics and quantum turbulence

Classical turbulence and quantum turbulence are in different fields of
physics from now.

8

It is probed that quantum turbulence can
become a ideal prototype to understand
turbulence in the aspect of vortices.

= New breakthrough for understanding
turbulence /



Quantum Turbulence : Past Simulation

T. Araki, M. Tsubota and S. K. Nemirovskii, Phys. Rev. Lett. 89, 145301

2002 .
alcu?ate the energy spectrum of quantum turbulence by using the vortex

filament model (initial condition : Taylor-Green-flow)

8520 (t)
ot
V5(T) = Vind(x) + Vsa(T)

K / [.’,Bo(t) — az] X dwo(t)

T 4n 2o (t) — z|3

= vs(xo)

Vind ()

No mutual friction

Solid boundary COW




Quantum Turbulence : Past Simulation
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Energy spectrum is consistent with the
Kolmogorov law at low £ (C = 0.7 )
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Simulation of Quantum Turbulence :
Numerical Parameters

Length scale is normalized by the lealing length &.
System is periodic box with 256° grid points

Spatial resolution Ax = 1/8 : £ includes 8 grid points
Volume of system V = 32°

Wavenumber resolution Ak = 27/32 = 0.196
Coupling constant g = 1

Time resolution At = 0.0001

Space : Pseudo-spectral method

Time : Runge-Kutta-Verner
method

o~



Simulation of Quantum Turbulence : 1,
Decaying Turbulence

There is no energy injection and the initial state
has random phase.

1-dimensional random phase

™
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® random number

X



Turbulence

ing

Decay




Decaying Turbulence

density

Small structures in y,=0 are
dissipated in y,=1

—Dissipation term dissipates
only short-wavelength
excitations.




Without Dissipating Compressible
Excitations:

. Nore, M. Abid, and M. E. Brachet, Phys. Rev. Lett. 78, 3896

Numerical simulation of GP
turbulence

The incompressible
kinetic energy changes to
compressible kinetic
energy while conserving

the total energy ’
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Without Dissipating Compressible

Excitations: -

Exponent n of the energy spectrum

$a T,

E(k)e<kn

s Qok=]2

o k14| |

s 2<k<16
—3/3

....
(¥l ]
L] :‘.III.

2 3 4 5 o 7 8 9 10

!

The energy spectrum is
consistent with the
Kolmogorov law in a short
period

—This consistency is broken in
late stage with many
compressible excitations

We need to dissipate
compressible
excitations

4



Decaying Turbulence

Time dependence of kinetic energy for v,=0 Time dependence of kinetic energy for y,=1
]_5 T T T T T 15 T T T T T
—EO) T Eaxt®
N T Ea® T EG0 1oy
—E(H T Egy®
5¢ 5¢ T B () T Eigl()
o —
0 0 I !
0 1 2 3 4 5 6 0 1 2 3 4 5 6

Y, = 0 : Energy of compressible excitations E,_ ¢ is

Kin
dominant

Y, =1 : Energy of vortices E_ ' is dominant

o




Comparison With Classical Turbulence

Energy Dissipation Rate
Energy dissipation rate of vortices : ¢ = —0F}, /ot

Time dependence of ¢ for v,=1 Time dependence of & for y,=0
1 T T T T T ].

\_

0 2 4 6 8 10 12 0 2 4 6 ] 10 12
f t

Y, = 1 : € is almost constant at 4 <¢< 10 (quasi steady state)

Y, =0 : € is unsteady (Interaction with compressible

aveiltatinnce)




Comparison With Classical Turbulence
Energy Spectrum

Exponent 7 of energy spectrum : Ei, = /dk EL (k) Bl (k) oc k™

Time dependence of 5 for y,=1 Time dependence of n for v,=0
2.81 . . . . . 2.81 . . . . .
2.6 = 261 " g 1 Straight line
—35/3 —35/3 . .
241 | 241 1 | fitting at
{ e || Ak < k< 2mE
2r . 2t _
- A‘Trmwwm | ol i M]]ITIT Trer 1 ;jl_\loln- ti
16 ] 1.6 ' ISSIpatin
ol T e il PRy | ©issipating
0 2 4 6 8 10 12 Y 2 4 s s 10 1o/faANge

f

YV, =1:m=-5/3at4<¢<10

o~

Y, =0:m=-53at4<r<7




Energy Dissipation Rate and Energy
Flux

Energy dissipation rate € is obtained by
switching off the moving random potential

Time dependence of £,
after swithing off the moving random potential
2 T T T T

(

0 0.2 0.4 0.6 0.8 1

OB, —12.5




Vortex Size Distribution
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E(%) [em3 / sec?]

Kolmogorov Constant
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Vortex filament: C
~ 0.7

Kolmogorov constant (It may be characteristic in quantum

turbulence)
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Decaying

0.5

s

31| * Log Eginl(h)
7|l —Log Ce2/3)-5/3

(C~0.55)

-1 -05 0 05 1 1.5 2
log &
Steady turbulence:

turbulence: C~0.32 (C~0.55

Classical turbulence : 1.4 < C < 1.8 — Smaller than classical
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Extension of the Inertial Range

/\ Depend on the scale of simulation

—_ =] Ly BN A <N | [020]
T T T T

1B ST

|+ Log Bgich)
||~ Log Ce2i3j-5/3

(C~0.55)

-1

05 0 05
log &

Energy spectrum for time correlation

B (f) = / de By, (x, 1) = / dk ELy, (k, 1)

B
Blon(@) = [ t Bo(o,) = [ dw E;in<w,w>y
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Eldni(f, X
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1.5

0.5 r

Extension of the Inertial Range

El(t, x = 0)DBEFE R M TARNE—AALT L

Eiin'(w)

t . omega

Inertial range becomes broad for time correlation.
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Extension of the Inertial Range

Injection of large vortex rings




Extension of the Inertial Range

256° grid 128% grid
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