Topological Excitations and Dynamical Behavior in Bose-Einstein Condensates and Other Systems

Michikazu Kobayashi

Kyoto University

Oct. 24th, 2013 in Okinawa "International Workshop for Young Researchers on Topological Quantum Phenomena in Condensed Matter with Broken Symmetries 2013"

Contents

- 1. Bose-Einstein condensates with internal degrees of freedom
- 2. Spin-2 spinor BEC
- 3. Vortices in spinor BEC
- 4. Dynamics of vortices in spinor BEC
- 5. Summary

Contents

- 1. Bose-Einstein condensates with internal degrees of freedom
- 2. Spin-2 spinor BEC
- 3. Vortices in spinor BEC
- 4. Dynamics of vortices in spinor BEC
- 5. Summary

Bose-Einstein Condensate with Internal Degrees of Freedom

Scalar BEC without internal degrees of freedom

$$\begin{split} \rho(\boldsymbol{x},\boldsymbol{y}) &= \langle \hat{\psi}(\boldsymbol{x}) \hat{\psi}^{\dagger}(\boldsymbol{y}) \rangle \stackrel{|\boldsymbol{x}-\boldsymbol{y}| \to \infty}{\longrightarrow} \psi(\boldsymbol{x}) \psi(\boldsymbol{y})^{*} \\ \psi(\boldsymbol{x}) &= |\psi(\boldsymbol{x})| \, \exp[i\varphi(\boldsymbol{x})] : \text{ broken } U(1) \text{ symmetry} \\ \text{ of global phase shift} \end{split}$$

Т

1.

Bose-Einstein Condensate with Internal Degrees of Freedom

BEC with internal degrees of freedom

- 1. Multi-component BEC (ex. ⁸⁷Rb and ⁴¹K BECs or different hyperfine level)
- 2. Spinor BEC (ex. 87 Rb \rightarrow spin-1 and spin-2 BECs)

magnetic trap : spin degrees of freedom is frozen \rightarrow scalar BEC laser trap : spin degrees of freedom is alive \rightarrow spinor BEC

Hyperfine spin :
$$F = I + S$$
I: nuclear spinIS: electron spinIIIIII S $1^{33}Cs$ $F=3, 4$ 5^2Cr $F=3$

Symmetry and Topological Excitation in BEC

	Order parameter manifold (G/H)	Topological excitation
Scalar BEC	$U(1)/1 \simeq U(1)$	vortex
2-component BEC (miscible)	$(U(1) \times U(1))/\mathbb{Z}_2$	vortex
2-component BEC (inmiscible)	$(U(1) \times U(1))/(U(1)/\mathbb{Z}_2)$ $\simeq O(2) \simeq U(1) \rtimes \mathbb{Z}_2$	vortex & domain wall
Spin-1 BEC (ferro)	$(U(1) \times SO(3))/U(1) \simeq SO(3)$	vortex
Spin-1 BEC (polar)	$ \begin{array}{l} (U(1) \times SO(3))/(U(1) \rtimes \mathbb{Z}_2) \\ \simeq (U(1) \times S^2)/\mathbb{Z}_2 \end{array} $	vortex & monopole
Spin-2 BEC (ferro)	$(U(1) \times SO(3))/(U(1) \times \mathbb{Z}_2)$ $\simeq SO(3)/\mathbb{Z}_2$	vortex
Spin-2 BEC (uniaxial nematic)	$U(1) \times SO(3)/(U(1) \rtimes \mathbb{Z}_2)$ $\simeq U(1) \times \mathbb{RP}^2$	vortex & monopole
Spin-2 BEC (biaxial nematic)	$(U(1) \times SO(3))/D_4$	vortex (non-Abelian)
Spin-2 BEC (cyclic)	$(U(1) \times SO(3))/T$	vortex (non-Abelian)

Symmetry and Topological Excitation in BEC

	Order parameter manifold (G/H)	Topological excitation
Scalar BEC	$U(1)/1 \simeq U(1)$	Voriex
2-component BEC (miscible)	$(U(1) \times U(1))/\mathbb{Z}_2$	Voriex
2-component BEC (inmiscible)	$ (U(1) \times U(1)) / (U(1) / \mathbb{Z}_2) $ $ \simeq O(2) $	vortex & clomain wall
Spin-1 BEC (ierro)	$(U(1) \times SO(3))/U(1) \simeq SO(3)$	Voriex
Spin-1 BEC (polar)	$ \begin{array}{l} (U(1) \times SO(3)) / (U(1) \rtimes \mathbb{Z}_2) \\ \simeq (U(1) \times S^2) / \mathbb{Z}_2 \end{array} $	voriex & monopole
Spin-2 BEC (ferro)	$(U(1) \times SO(3))/(U(1) \times \mathbb{Z}_2)$ $\simeq SO(3)/\mathbb{Z}_2$	vortex
Spin-2 BEC (uniaxial nematic)	$U(1) \times SO(3)/(U(1) \rtimes \mathbb{Z}_2)$ $\simeq U(1) \times \mathbb{RP}^2$	vortex & monopole
Spin-2 BEC (biaxial nematic)	$(U(1) \times SO(3))/D_4$	vortex (non-Abelian)
Spin-2 BEC (cyclic)	$(U(1) \times SO(3))/T$	vortex (non-Abelian)

Contents

1. Bose-Einstein condensates with internal degrees of freedom

2. Spin-2 spinor BEC

- 3. Vortices in spinor BEC
- 4. Dynamics of vortices in spinor BEC
- 5. Summary

Theory of Spinor BEC

Hamiltonian of Bose system with spin

$$H = \int dx_1 \frac{\hbar^2}{2M} \nabla \Psi_m^{\dagger}(x_1) \nabla \Psi_m(x_1)$$

+ $\frac{1}{2} \int dx_2 \Psi_{m_1}^{\dagger}(x_1) \Psi_{m_2}^{\dagger}(x_2) V_{m_1 m_2 m_{1'} m_{2'}}(x_1 - x_2) \Psi_{m_{2'}}(x_2) \Psi_{m_{1'}}(x_1)$
Low energy contact interaction $(l = 0)$
 $V_{m_1 m_1 m_{1'} m_{2'}}(x_1 - x_2) = \delta(x_1 - x_2) \sum_{F = \text{even}} g_F \sum_{m_1 m_2 m_{1'} m_{2'} M} O_{m_1 m_2}^{FM} \left(O_{m_1' m_2'}^{FM} \right)^*$

Coupling constant depends on total spin of two colliding particles

Theory of Spinor BEC

For spin-2 case

$$H = \int d\mathbf{x} \left[\frac{\hbar^2}{2M} \nabla \Psi_m^{\dagger} \nabla \Psi_m + \frac{c_0}{2} : n^2 : + \frac{c_1}{2} : \mathbf{F}^2 : + \frac{c_2}{2} A_{20}^2^{\dagger} A_{20}^2 \right]$$

$$c_0 = \frac{4g_2 + 3g_4}{7}, \qquad c_0 = \frac{g_4 - g_2}{7}, \qquad c_0 = \frac{7g_0 - 10g_2 + 3g_4}{35}$$

 $n = \Psi_m^{\dagger} \Psi_m$: number density operator $F = \Psi_m^{\dagger} F_{mn} \Psi_n$: spin density operator $A_{20} = (-1)^m \Psi_m \Psi_{-m}$: time reversal operator (singlet-pair amplitude)

Theory of Spinor BEC

Mean-field theory at T = 0: $|\psi\rangle = (\psi_m a_{m,k=0})^N |0\rangle$: all particles condense into a single-particle ground state

$$\langle H \rangle = \int d\mathbf{x} \left[\frac{\hbar^2}{2M} \nabla \psi_m^{\dagger} \nabla \psi_m + \frac{c_0}{2} n^2 + \frac{c_1}{2} \mathbf{F}^2 + \frac{c_2}{2} A_{20}^2^{\dagger} A_{20}^2 \right]$$

 $n = \psi_m^{\dagger} \psi_m$: number density $F = \psi_m^{\dagger} F_{mn} \psi$: spin density $A_{20} = (-1)^m \psi_m \psi_{-m}$: singlet-pair amplitude

Phase Diagram for Ground State

$$\langle H \rangle = \int dx \begin{bmatrix} \frac{\hbar^2}{2M} \nabla \psi_m^{\dagger} \nabla \psi_m + \frac{c_0}{2} n^2 + \frac{c_1}{2} F^2 + \frac{c_2}{2} A_{20}^2 + A_{20}^2 \end{bmatrix}$$
Uniaxial Nematic:

$$\psi_m^{U} = (0 \ 0 \ 1 \ 0 \ 0)^T$$
Cyclic:

$$\psi_m^{C} = \frac{1}{2} (i \ 0 \ \sqrt{2} \ 0 \ i)^T$$
Cegenerate

$$\psi_m^{B} = \frac{1}{\sqrt{2}} (1 \ 0 \ 0 \ 0 \ 1)^T$$
Ferromagnetic:

$$\psi_m^{F} = (1 \ 0 \ 0 \ 0 \ 0)^T$$

$$A. Widera et al. NJP 8, 152 (2006)$$

Spherical Harmonic Representation

$$\psi(\theta,\phi) = \sum_{m=-2}^{2} \psi_m Y_{2,m}(\theta,\phi)$$

Phase Diagram for Ground State

$$\langle H \rangle = \int dx \begin{bmatrix} \hbar^2 \\ 2M \end{bmatrix} \nabla \psi_m^{\dagger} \nabla \psi_m + \frac{c_0}{2} n^2 + \frac{c_1}{2} F^2 + \frac{c_2}{2} A_{20}^{2} + A_{20}^2 \end{bmatrix}$$

$$\begin{array}{c} \text{Uniaxial Nematic:} \\ \psi_m^{U} = (0 \quad 0 \quad 1 \quad 0 \quad 0)^T \\ D_{\infty} : \text{cylindrical symmetry} \\ \text{Biaxial Nematic:} \\ \psi_m^{B} = \frac{1}{\sqrt{2}} (1 \quad 0 \quad 0 \quad 0 \quad 1)^T \\ D_{4} : \text{square symmetry} \\ c_2 = 4c_1 \end{array}$$

$$\begin{array}{c} \text{Cyclic:} \\ \text{Cyclic:} \\ \text{T: tetrahedral symmetry} \\ \psi_m^{C} = \frac{1}{2} (i \quad 0 \quad \sqrt{2} \quad 0 \quad i)^T \\ \psi_m^{F} = (1 \quad 0 \quad 0 \quad 0 \quad 0)^T \\ \text{Ferromagnetic:} \\ \psi_m^{F} = (1 \quad 0 \quad 0 \quad 0 \quad 0)^T \\ \text{U}(1) \times \mathbb{Z}_2 : \text{oriented toroidal symmetry} \\ \end{array}$$

Symmetry of cyclic state

Symmetry of cyclic state

Spin rotations keeping cyclic state invariant form a non Abelian tetrahedral symmetry

Phase Diagram for Ground State

$$\langle H \rangle = \int dx \left[\frac{\hbar^2}{2M} \nabla \psi_m^{\dagger} \nabla \psi_m + \frac{c_0}{2} n^2 + \frac{c_1}{2} F^2 + \frac{c_2}{2} A_{20}^{2} {}^{\dagger} A_{20}^2 \right]$$
Uniaxial Nematic:

$$\psi_m^{U} = (0 \quad 0 \quad 1 \quad 0 \quad 0)^T$$

$$D_{\infty} : \text{cylindrical symmetry}$$
Biaxial Nematic:

$$\psi_m^{B} = \frac{1}{\sqrt{2}} (1 \quad 0 \quad 0 \quad 0 \quad 1)^T$$

$$D_{4} : \text{square symmetry}$$

$$c_2 = 4c_1$$

$$Cyclic: T : \text{tetrahedral symmetry}$$

$$\psi_m^{C} = \frac{1}{2} (i \quad 0 \quad \sqrt{2} \quad 0 \quad i)^T$$

$$Ferromagnetic: c_2$$

$$\psi_m^{F} = (1 \quad 0 \quad 0 \quad 0 \quad 0)^T$$

$$U(1) \times \mathbb{Z}_2 : \text{oriented toroidal symmetry}$$

Phase Diagram for Ground State

$$\langle H \rangle = \int dx \left[\frac{\hbar^2}{2M} \nabla \psi_m^{\dagger} \nabla \psi_m + \frac{c_0}{2} n^2 + \frac{c_1}{2} F^2 + \frac{c_2}{2} A_{20}^{2} \dagger A_{20}^2 \right]$$

$$c_1 \qquad Cyclic: T: tetrahedral symmetry \qquad U \qquad C_2 \qquad C_1 \qquad C_2 \qquad C_2 \qquad C_1 \qquad C_2 \qquad C_2 \qquad C_1 \qquad C_2 \qquad$$

Contents

- 1. Bose-Einstein condensates with internal degrees of freedom
- 2. Spin-2 spinor BEC
- 3. Vortices in spinor BEC
- 4. Dynamics of vortices in spinor BEC
- 5. Summary

Quantized Vortices in BEC

For scalar BEC :
$$\psi = |\psi| e^{im\varphi}$$

Topological charge can be characterized by widing number m (additive group of integers)

Topological excitations and dynamical behavior in Bose-Einstein condensates and other systems

Quantized vortex for m = +1

Non-Abelian Vortex

Topological charge of vortices

Scalar BEC

Integer (winding of phase by 2π multiple)

Cyclic phase in spin-2 spinor BEC

Vortices in cyclic state

Vortices in biaxial nematic state

$$\frac{1}{\sqrt{2}}(e^{i\varphi} \quad 0 \quad 0 \quad 0 \quad e^{-i\varphi})^T \quad \frac{1}{\sqrt{2}}(e^{i\varphi} \quad 0 \quad 0 \quad 0 \quad 1)^T \quad \frac{1}{\sqrt{2}}(0 \quad e^{i\varphi} \quad 0 \quad 1 \quad 0)^T$$

Contents

- 1. Bose-Einstein condensates with internal degrees of freedom
- 2. Spin-2 spinor BEC
- 3. Vortices in spinor BEC
- 4. Dynamics of vortices in spinor BEC
- 5. Summary

Gross-Pitaevskii Equation

Coherent dynamics of mean-field : Gross-Pitaevskii equation

$$i\hbar\frac{\partial\psi_m}{\partial t} = \frac{\delta H}{\delta\psi_m^*}$$

$$i\hbar \frac{\partial \psi_{\pm 2}}{\partial t} = -\frac{\hbar^2}{2M} \nabla^2 \psi_{\pm 2} + c_0 n \psi_{\pm 2} + c_1 (F_{\mp} \psi_1 \pm 2F_z \psi_{\pm 2}) + \frac{c_2}{\sqrt{5}} A_{00} \psi_{\mp 2}^*$$

$$i\hbar \frac{\partial \psi_{\pm 1}}{\partial t} = -\frac{\hbar^2}{2M} \nabla^2 \psi_{\pm 1} + c_0 n \psi_{\pm 1} + c_1 \left(\frac{\sqrt{6}}{2} F_{\mp 0} \psi_0 + F_{\pm} \psi_{\pm 2} \pm F_z \psi_{\pm 1}\right) - \frac{c_2}{\sqrt{5}} A_{00} \psi_{\mp 1}^*$$

$$i\hbar \frac{\partial \psi_0}{\partial t} = -\frac{\hbar^2}{2M} \nabla^2 \psi_0 + c_0 n \psi_0 + \frac{\sqrt{6}}{2} c_1 (F_{-} \psi_{-1} + F_{+}) + \frac{c_2}{\sqrt{5}} A_{00} \psi_0^*$$

Collision Dynamics

: All Abelian vortices such as those in scalar BEC

Pass through

: Rarely seen for quantized vortices, and sometimes seen for disclination in liquid crystals or cosmic strings

Collision Dynamics for Cyclic Phase

There are 12 kinds of vortices in cyclic phase

For same kinds of vortices : $+2\pi/3 \& +2\pi/3 \rightarrow$ reconnection

For different and commutative vortices : $+2\pi/3 \& -2\pi/3 \rightarrow$ pass through

What happens for non-commutative vortices for different spin rotations?

Collision Dynamics for Cyclic Phase

New "rung" vortex appears bridging two colliding vortices

Collision of Vortex

Monopole Confined in Vortex Junction

Vortex core has usually internal structure different from cyclic state depending on the charge of vortex (ex. ferromagnetic state with $F \neq 0$)

Monopole (div $F \neq 0$) appears at the Y-shape junction point

Magnetization and its divergence is confined to only vortex lines

 \rightarrow confined monopole (charge is classified by the tetrahedral symmetry)

Monopole Confined in Vortex Junction

•Each arrow shows the direction of magnetization

Confined monopoles appear at the junctions points of vortices as a form of monopole-antimonopole pair

Collision Dynamics in Biaxial Nematic Phase

Degeneration between Uniaxial and Biaxial Nematic Phases

$$\langle H \rangle = \int dx \left[\frac{\hbar^2}{2M} \nabla \psi_m^{\dagger} \nabla \psi_m + \frac{c_0}{2} n^2 + \frac{c_1}{2} F^2 + \frac{c_2}{2} A_{20}^{\dagger} A_{20}^2 \right]$$

$$\begin{array}{c} \text{Uniaxial Nematic:} \\ \psi_m^{\text{U}} = (0 \ 0 \ 1 \ 0 \ 0)^T \\ D_{\infty} : \text{cylindrical symmetry} \\ \frac{1}{\sqrt{2}} (\cos\eta \ 0 \ \sqrt{2} \sin\eta \ 0 \ \cos\eta)^T \\ & & \\ \end{array} \right]$$

$$\begin{array}{c} \text{Biaxial Nematic:} \\ \psi_m^{\text{B}} = \frac{1}{\sqrt{2}} (1 \ 0 \ 0 \ 0 \ 1)^T \\ & & \\ D_4 : \text{square symmetry} \\ & & \\ c_2 = 4c_1 \end{array}$$

Degeneration between Uniaxial and Biaxial Nematic Phases

Quasi-Nambu-Goldstone Mode

$$\frac{1}{\sqrt{2}} \left(\cos\eta \quad 0 \quad \sqrt{2} \sin\eta \quad 0 \quad \cos\eta \right)^T$$

 η is not the symmetry of the Hamiltonian (accidental symmetry)

 \rightarrow Gapless excitation mode due to η is not the true Nambu-Goldstone mode (Quasi-Nambu-Goldstone mode)

Thermal Phase Diagram

Quasi-Nambu-Goldstone mode easily becomes gapful through (quantum or) thermal fluctuation

BEC at Finite Temperature

Stochastic Gross-Pitaevskii equation (complex Langevin equation)

Collision Dynamics at Finite Temperature

Non-Abelian property is restored by massive quasi-Nambu-Goldstone mode due to thermal fluctuation

Summary

- 1. Spin-2 spinor BEC can have exotic non-Abelian vortex due to non-Abelian discrete symmetry.
- 2. Collision of non-Abelian vortex in the cyclic phase show the formation of rung vortex bridging colliding vortices.
- 3. After the collision, there appears a monopole confined in the Y-shaped junction.
- 4. Non-Abelian property disappears in the biaxial nematic phase due to the quasi-Nambu-Goldstone mode, and is restored by thermal fluctuations at finite temperatures.