First, import
import numpy as np
import matplotlib.pyplot as plt
plt.rcParams["font.family"] = "MS Gothic"
Graph Basics
# Securing the drawing area
fig = plt.figure()
# Securing axes
# If there is only one graph, 1,1,1 is fine.
# This number changes when multiple graphs are arranged side by side, but this will be explained later.
ax = fig.add_subplot(1, 1, 1)
# Draw a line graph on the axis
# Line graphs are plot, and scatter plots (without lines) are scatter
# However, you can also draw scatter plots using plot
ax.plot(np.array([1, 4, 7]), np.array([2, 5, 1])) # Line graph connecting (1,2),(4,5), and (7,1)
# graph drawing
plt.show()
mark with a dot (point)
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
# You can draw points at coordinates specified with the marker option
# marker = "o" : round dot
# marker = "x" : cross mark
# marker = "^" : triangles
ax.plot(np.array([1, 4, 7]), np.array([2, 5, 1]), marker = "o")
plt.show()
Change line type
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
x = np.linspace(0, 2*np.pi, 100)
# Line style can be changed with the linestyle option
# linestyle = "dashed"
# linestyle = "dotted"
# linestyle = "dashdot"
# linestyle = "none" : No line (can be used with markers to create a scatter plot)
ax.plot(x, np.sin(x), linestyle = "dashed")
plt.show()
Change the color
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
x = np.linspace(0, 2*np.pi, 100)
# You can change the color using the color option (the color of the dots will also change at the same time)
# color = "red"
# color = "tab:red"
# color = "black"
ax.plot(x, np.sin(x), color = "tab:green")
plt.show()
Name the axis
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
x = np.linspace(0, 2*np.pi, 100)
# ax.set_xlabel assigns a name to the x-axis
ax.set_xlabel("name of x-axis")
# ax.set_ylabel assigns a name to the y-axis
ax.set_ylabel("name of y-axis")
ax.plot(x, np.sin(x))
plt.show()
Name the graph
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
x = np.linspace(0, 2*np.pi, 100)
# ax.set_title gives the graph a name
ax.set_title("graph of sin(x)")
ax.plot(x, np.sin(x))
plt.show()
Set the axis range
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
x = np.linspace(0, 2*np.pi, 100)
# You can change the range of the x-axis with ax.set_xlim
ax.set_xlim(0, pi)
# You can change the range of the y-axis with ax.set_ylim
ax.set_ylim(-5, 5)
ax.plot(x, np.tan(x))
plt.show()
Set axis values
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
x = np.linspace(0, 2*np.pi, 100)
# ax.set_xticks (vector) allows you to display only the desired parts of the x-axis values
ax.set_xticks(np.array([0, np.pi/2, np.pi, 3*np.pi/2, 2*np.pi]))
# ax.set_yticks (vector) allows you to display only the desired parts of the y-axis values
ax.set_yticks(np.array([-1, -0.5, 0, 0.5, 1]))
ax.plot(x, np.sin(x))
plt.show()
Set the values of the axes to whatever notation you want
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
x = np.linspace(0, 2*np.pi, 100)
ax.set_xticks(np.array([0, np.pi/2, np.pi, 3*np.pi/2, 2*np.pi]))
# ax.set_xticklabels (vector) allows you to change the display of the values set with xticks
# The number of elements in the vectors ax.set_xticks and ax.set_xtickslabels must be the same
ax.set_xticklabels(np.array(["0", "π/2", "π", "3π/2", "2π"]))
ax.set_yticks(np.array([-1, 0, 1]))
# ax.set_yticklabels (vector) allows you to change the display of the values set with yticks
# The number of elements in the vectors ax.set_yticks and ax.set_ytickslabels must be the same
ax.set_yticklabels(np.array(["ymin", "0", "ymax"]))
ax.plot(x, np.sin(x))
plt.show()
Grid against the scale
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
x = np.linspace(0, 2*np.pi, 100)
ax.set_xticks(np.array([0, np.pi/2, np.pi, 3*np.pi/2, 2*np.pi]))
ax.set_xticklabels(np.array(["0", "π/2", "π", "3π/2", "2π"]))
# ax.set_grid (axis = "x") adds a grid to the x-axis tick marks
ax.grid(axis = "x")
ax.set_yticks(np.array([-1, 0, 1]))
ax.set_yticklabels(np.array(["ymin", "0", "ymax"]))
# ax.set_grid (axis = "y") adds a grid to the y-axis tick marks
ax.grid(axis = "y", color="tab:red", linestyle = "dashed")
ax.plot(x, np.sin(x))
plt.show()
Attach a small scale with no numerical value
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
x = np.linspace(0, 2*np.pi, 100)
ax.set_xticks(np.array([0, np.pi/2, np.pi, 3*np.pi/2, 2*np.pi]))
ax.set_xticklabels(np.array(["0", "π/2", "π", "3π/2", "2π"]))
# minor = true option sets the minor tick mark setting
ax.set_xticks(np.array([np.pi/4, 3*np.pi/4, 5*np.pi/4, 7*np.pi/4]), minor = True)
ax.set_yticks(np.array([-1, 0, 1]))
ax.set_yticklabels(np.array(["ymin", "0", "ymax"]))
ax.plot(x, np.sin(x))
plt.show()
Attach grid to small scale
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
x = np.linspace(0, 2*np.pi, 100)
ax.set_xticks(np.array([0, np.pi/2, np.pi, 3*np.pi/2, 2*np.pi]))
ax.set_xticklabels(np.array(["0", "π/2", "π", "3π/2", "2π"]))
ax.set_xticks(np.array([np.pi/4, 3*np.pi/4, 5*np.pi/4, 7*np.pi/4]), minor = True)
ax.grid(axis = "x")
# which = "minor" option makes the grid for minor tick marks
ax.grid(axis = "x", which = "minor", linestyle = "dashed")
ax.set_yticks(np.array([-1, 0, 1]))
ax.set_yticklabels(np.array(["ymin", "0", "ymax"]))
ax.plot(x, np.sin(x))
plt.show()
Same ratio of length to number on x-axis and y-axis
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
x = np.linspace(0, 2*np.pi, 100)
# ax.set_aspect(1) sets the ratio of the vertical and horizontal values to be the same
ax.set_aspect(1)
ax.plot(x, np.sin(x))
plt.show()
Using LaTeX for Strings
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
x = np.linspace(0, 2*np.pi, 100)
# By adding an L before a string, you can use LaTeX notation
# ax.set_x(y)label, ax.set_title, ax.set_x(y)ticklabels, label (described later) etc. correspond to this
ax.set_xlabel(r"$x$")
ax.set_ylabel(r"$\sin(x)$")
ax.set_title(r"graph of $\sin(x)$")
ax.set_xticks(np.array([0, np.pi/2, np.pi, 3*np.pi/2, 2*np.pi]))
ax.set_xticklabels(np.array(["0", r"$\pi/2$", r"$\pi$", r"$3\pi/2$", r"$2\pi$"]))
ax.set_yticks(np.array([-1, 0, 1]))
ax.set_yticklabels(np.array([r"$y_\mathrm{min}$", "0", r"$y_\mathrm{max}$"]))
ax.plot(x, np.sin(x))
plt.show()
Graph size
# You can change the size of the drawing area with the # figsize option
# The default is [6.4; 4.8]
fig = plt.figure(figsize = np.array([6.4, 4.8]) * 0.75)
ax = fig.add_subplot(1, 1, 1)
x = np.linspace(0, 2*np.pi, 100)
ax.plot(x, np.sin(x))
plt.show()
Saving Graphs
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
x = np.linspace(0, 2*np.pi, 100)
ax.plot(x, np.sin(x))
# Instead of show(), use savefig("filename") to save the graph
# By setting bbox_inches = "tight" and pad_inches = 0.1 as options, you can minimize the extra space around the image
# Commonly used file extensions include png and pdf (the file type is automatically determined based on the file extension)
plt.savefig("graph.png", bbox_inches = "tight", pad_inches = 0.1)
Draw multiple graphs on a single axis
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
x = np.linspace(0, 2*np.pi, 100)
# By repeatedly using ax.plot and ax.scatter, you can draw multiple graphs on a single axis
# The color changes automatically (of course, you can specify each color individually with the color option)
ax.plot(x, np.sin(x))
ax.plot(x, np.cos(x))
plt.show()
Mixed plot and scatter
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
x1 = np.linspace(0, 2*np.pi, 100)
x2 = np.linspace(0, 2*np.pi, 10)
# You can also mix ax.plot and ax.scatter
# Note that color management is separate for plot and scatter
ax.plot(x1, np.sin(x1))
ax.scatter(x2, np.cos(x2))
plt.show()
Show legend
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
x = np.linspace(0, 2*np.pi, 100)
# Name with the label option
ax.plot(x, np.sin(x), label = r"$\sin(x)$")
ax.plot(x, np.cos(x), label = r"$\cos(x)$")
# With ax.legend(), you can display the names assigned with the label option as a legend
ax.legend()
plt.show()
Legend Location
fig = plt.figure()
ax = fig.add_subplot(1,1,1)
x = np.linspace(0, 2*np.pi, 100)
ax.plot(x, np.sin(x), label = r"$\sin(x)$")
ax.plot(x, np.sin(x - 2*np.pi/5), label = r"$\sin(x-2\pi/5)$")
ax.plot(x, np.sin(x - 4*np.pi/5), label = r"$\sin(x-4\pi/5)$")
ax.plot(x, np.sin(x - 6*np.pi/5), label = r"$\sin(x-6\pi/5)$")
ax.plot(x, np.sin(x - 8*np.pi/5), label = r"$\sin(x-8\pi/5)$")
# The position of the legend is adjusted automatically, but you can specify the approximate position using loc
# "upper left"
# "upper center"
# "upper right"
# "center left"
# "center"
# "center right"
# "lower left"
# "lower center"
# "lower right"
ax.legend(loc = "center")
plt.show()
Detailed location of legend
fig = plt.figure()
ax = fig.add_subplot(1,1,1)
x = np.linspace(0, 2*np.pi, 100)
ax.plot(x, np.sin(x), label = r"$\sin(x)$")
ax.plot(x, np.sin(x - 2*np.pi/5), label = r"$\sin(x-2\pi/5)$")
ax.plot(x, np.sin(x - 4*np.pi/5), label = r"$\sin(x-4\pi/5)$")
ax.plot(x, np.sin(x - 6*np.pi/5), label = r"$\sin(x-6\pi/5)$")
ax.plot(x, np.sin(x - 8*np.pi/5), label = r"$\sin(x-8\pi/5)$")
# You can specify the position with bbox_to_anchor. (0,0) is the lower left corner, (1,1) is the upper right corner
# Furthermore, by specifying loc, you can set the position of the legend to bbox_to_anchor
# Specify the number of columns with ncols
ax.legend(bbox_to_anchor = (0.5, 1), loc = "lower center", ncols = 5)
plt.show()
Different y-axis for left and right
fig = plt.figure()
t = np.linspace(0, 0.9, 100)
# First, create a graph for the left side (normal) of the y-axis
ax1 = fig.add_subplot(1, 1, 1)
ax1.plot(t, 5 - 9.8 * t)
ax1.set_xlabel("time [s]")
ax1.set_ylabel("velocity [m/s]")
# Create a graph for the y-axis on the right side
# Creating an axis with the y-axis on the right using twinx
ax2 = ax1.twinx()
# Please note that color management is separate for ax1 and ax2
ax2.plot(t, - 4.9 * t ** 2 + 5 * t)
ax2.set_ylabel("height [m]")
plt.show()
Different y-axis for left and right (color, legend adjustment)
fig = plt.figure()
t = np.linspace(0, 0.9, 100)
ax1 = fig.add_subplot(1, 1, 1)
ax1.plot(t, 5 - 9.8 * t, label = "velocity (without friction) ")
ax1.plot(t, 24.6 * np.exp(- t / 2) - 19.6, label = "velocity (with friction) ")
ax1.set_xlabel("time [s]")
ax1.set_ylabel("velocity [m/s]")
ax1.legend()
ax2 = ax1.twinx()
ax2.plot(t, - 4.9 * t ** 2 + 5 * t, label = "height (without friction) ", color = "tab:green")
ax2.plot(t, 49.2 * (1 - np.exp(- t / 2)) - 19.6 * t, label = "height (with friction) ", color = "tab:red")
ax2.set_ylabel("height [m]")
ax2.legend()
plt.show()
Multiple axes
# Be sure to set the size of the drawing area, as multiple axes will be drawn
fig = plt.figure(figsize = np.array([6.4 * 2, 4.8 * 3]) * 0.8)
x1 = np.linspace(- np.pi, np.pi, 100)
x2 = np.linspace(-1, 1, 100)
x3 = np.linspace(-2, 2, 100)
x4 = np.linspace(1, 2, 100)
# The first one when the axes are arranged in three rows and two columns
ax = fig.add_subplot(3, 2, 1)
ax.plot(x1, np.sin(x1), label = r"$\sin(x)$")
ax.plot(x1, np.cos(x1), label = r"$\cos(x)$")
ax.plot(x1, np.tan(x1), label = r"$\tan(x)$")
ax.set_ylim(-1.5, 1.5)
ax.set_xlabel(r"$x$")
ax.set_title("Graph of trigonometric functions")
ax.legend()
# The second one when the axes are arranged in three rows and two columns
ax = fig.add_subplot(3, 2, 2)
ax.plot(x3, np.sinh(x3), label = r"$\sinh(x)$")
ax.plot(x3, np.cosh(x3), label = r"$\cosh(x)$")
ax.plot(x3, np.tanh(x3), label = r"$\tanh(x)$")
ax.set_xlabel(r"$x$")
ax.set_title("Graph of hyperbolic functions")
ax.legend()
# The third one when the axes are arranged in three rows and two columns
ax = fig.add_subplot(3, 2, 3)
ax.plot(x1, 1 / np.sin(x1), label = r"$\csc(x)$")
ax.plot(x1, 1 / np.cos(x1), label = r"$\sec(x)$")
ax.plot(x1, 1 / np.tan(x1), label = r"$\cot(x)$")
ax.set_ylim(-10, 10)
ax.set_xlabel(r"$x$")
ax.set_title("Graph of the reciprocal of trigonometric functions")
ax.legend()
# The fourth one when the axes are arranged in three rows and two columns
ax = fig.add_subplot(3, 2, 4)
ax.plot(x3, 1 / np.sinh(x3), label = r"$\mathrm{csch}(x)$")
ax.plot(x3, 1 / np.cosh(x3), label = r"$\mathrm{sech}(x)$")
ax.plot(x3, 1 / np.tanh(x3), label = r"$\coth(x)$")
ax.set_ylim(-4, 4)
ax.set_xlabel(r"$x$")
ax.set_title("Graph of the reciprocal of hyperbolic functions")
ax.legend()
# The fifth one when the axes are arranged in three rows and two columns
ax = fig.add_subplot(3, 2, 5)
ax.plot(x2, np.arcsin(x2), label = r"$\sin^{-1}(x)$")
ax.plot(x2, np.arccos(x2), label = r"$\cos^{-1}(x)$")
ax.plot(x3, np.arctan(x3), label = r"$\tan^{-1}(x)$")
ax.set_xlabel(r"$x$")
ax.set_title("Graph of inverse trigonometric functions")
ax.legend()
# The sixth one when the axes are arranged in three rows and two columns
ax = fig.add_subplot(3, 2, 6)
ax.plot(x3, np.arcsinh(x3), label = r"$\sinh^{-1}(x)$")
ax.plot(x4, np.arccosh(x4), label = r"$\cosh^{-1}(x)$")
ax.plot(x2, np.arctanh(x2), label = r"$\tanh^{-1}(x)$")
ax.set_xlabel(r"$x$")
ax.set_title("Graph of inverse hyperbolic functions")
ax.legend()
# Adjust axis spacing with subplots_adjust
# wspace for horizontal, hspace for vertical
plt.subplots_adjust(wspace=0.2, hspace=0.3)
plt.show()
single-logarichmic graph
fig = plt.figure()
x = np.linspace(0, 5, 5)
ax = fig.add_subplot(1, 1, 1)
# ax.set_yscale("log") creates a semi-logarithmic graph (y-axis is logarithmic scale)
ax.set_yscale("log")
ax.plot(x, 5 * np.exp(- 2 * x), marker = "o")
ax.set_title("In a semi-logarithmic graph, exponential functions appear as straight lines")
ax.set_xlabel(r"$x$")
ax.set_ylabel(r"$5e^{-2x}$")
plt.show()
double-logarithmic graph
fig = plt.figure()
x = np.linspace(1, 100, 10)
ax = fig.add_subplot(1, 1, 1)
# Add ax.set_xscale("log") to create a double logarithmic graph (logarithmic scale on both the x-axis and y-axis)
ax.set_xscale("log")
ax.set_yscale("log")
ax.plot(x, 10 * x ** (- 5 / 3), marker = "o")
ax.set_title("In a logarithmic graph, power functions become straight lines")
ax.set_xlabel(r"$x$")
ax.set_ylabel(r"$10x^{-5/3}$")
plt.show()
When using ticks (setting axis values) in a logarithmic graph, it is best to use them in conjunction with ticklabels (or else the graph may not display well).
# On logarithmic scale graphs, minor ticks are basically displayed as they are
# If you want to delete it, add the following description
plt.rcParams["ytick.minor.size"] = 0 # Set the vector of values you want to set on the y-axis
fig = plt.figure()
x = np.linspace(0, 5, 5)
ax = fig.add_subplot(1, 1, 1)
ax.set_yscale("log")
# Set the vector of values you want to set on the y-axis
vector_y = np.array([0.02, 0.7, 1.4, 5])
ax.set_yticks(vector_y)
ax.set_yticklabels(vector_y)
ax.plot(x, 5 * np.exp(- 2 * x), marker = "o")
ax.set_xlabel(r"$x$")
ax.set_ylabel(r"$5e^{-2x}$")
plt.show()
Basic Histogram
fig = plt.figure()
x = np.hstack([np.random.normal(0, 1, 1000), np.random.normal(5, 2, 1000)])
ax = fig.add_subplot(1, 1, 1)
# ax.hist(vector) produces a histogram
ax.hist(x)
ax.set_xlabel(r"$x$")
ax.set_ylabel("histogram")
plt.show()
change the grade number
fig = plt.figure()
x = np.hstack([np.random.normal(0, 1, 1000), np.random.normal(5, 2, 1000)])
ax = fig.add_subplot(1, 1, 1)
# Specify the number of classes with the bins option
ax.hist(x, bins = 20)
ax.set_xlabel(r"$x$")
ax.set_ylabel("histogram")
plt.show()
Make it a probability distribution, not a frequency
fig = plt.figure()
x = np.hstack([np.random.normal(0, 1, 1000), np.random.normal(5, 2, 1000)])
ax = fig.add_subplot(1, 1, 1)
# When density = true, it becomes a probability distribution rather than a frequency distribution
ax.hist(x, bins = 20, density = True)
ax.set_xlabel(r"$x$")
ax.set_ylabel(r"$p(x)$")
plt.show()
Bars only on the outer border (useful for displaying multiple histograms)
fig = plt.figure()
x1 = np.random.normal(0, 1, 1000)
x2 = np.random.normal(5, 2, 1000)
x3 = np.hstack([x1, x2])
ax = fig.add_subplot(1, 1, 1)
# When histtype = "step", only the outer frame is displayed
ax.hist(x1, bins = 20, density = True, histtype = "step", label = r"$p_1(x)$")
ax.hist(x2, bins = 20, density = True, histtype = "step", label = r"$p_2(x)$")
ax.hist(x3, bins = 20, density = True, histtype = "step", label = r"$p_{1 + 2}(x)$")
ax.set_xlabel(r"$x$")
ax.set_ylabel(r"$p(x)$")
ax.legend()
plt.show()
A note on histograms
If you want to plot something more advanced, such as a histogram of a line chart, you have to get a vector of the histogram, which can be obtained by the fit function in StatsBase, but it is quite tedious (this is where Python ( numpy) wins hands down).Point color and point size in scatter plots by scatter
Specify a different vector for the color of a point in a scatterplot with scatter
fig = plt.figure()
height = np.array([172.3, 165, 179.6, 174.5, 173.8, 165.4, 164.5, 174.9, 166.8, 185])
mass = np.array([75.24, 55.8, 78, 71.1, 67.7, 55.4, 63.7, 77.2, 67.5, 84.6])
fat = np.array([21.3, 15.7, 20.1, 18.4, 17.1, 22, 32.2, 36.9, 27.6, 14.4])
ax = fig.add_subplot(1, 1, 1)
# By specifying a vector with the c option, the points will be colored according to the values in that vector
ax.scatter(height, mass, c = fat)
ax.set_xlabel("height [cm]")
ax.set_ylabel("weight [kg]")
plt.show()
Display a color bar that maps colors to numerical values
fig = plt.figure()
height = np.array([172.3, 165, 179.6, 174.5, 173.8, 165.4, 164.5, 174.9, 166.8, 185])
mass = np.array([75.24, 55.8, 78, 71.1, 67.7, 55.4, 63.7, 77.2, 67.5, 84.6])
fat = np.array([21.3, 15.7, 20.1, 18.4, 17.1, 22, 32.2, 36.9, 27.6, 14.4])
ax = fig.add_subplot(1, 1, 1)
# Assign the scatter plot itself as a variable (in this case, the variable c_points)
c_points = ax.scatter(height, mass, c = fat)
# colorbar(c_points, ax = ax) adds a color bar
fig.colorbar(c_points)
ax.set_xlabel("height [cm]")
ax.set_ylabel("weight [kg]")
plt.show()
Option 1 for color, color bar
fig = plt.figure()
height = np.array([172.3, 165, 179.6, 174.5, 173.8, 165.4, 164.5, 174.9, 166.8, 185])
mass = np.array([75.24, 55.8, 78, 71.1, 67.7, 55.4, 63.7, 77.2, 67.5, 84.6])
fat = np.array([21.3, 15.7, 20.1, 18.4, 17.1, 22, 32.2, 36.9, 27.6, 14.4])
ax = fig.add_subplot(1, 1, 1)
# The vmax and vmin options allow you to set the maximum and minimum values for colors
c_points = ax.scatter(height, mass, c = fat, vmin = 10, vmax = 40)
# Color bars are named with the label option
fig.colorbar(c_points, label = "body fat [%]")
ax.set_xlabel("height [cm]")
ax.set_ylabel("weight [kg]")
plt.show()
Option 2 for color, color bar
fig = plt.figure()
height = np.array([172.3, 165, 179.6, 174.5, 173.8, 165.4, 164.5, 174.9, 166.8, 185])
mass = np.array([75.24, 55.8, 78, 71.1, 67.7, 55.4, 63.7, 77.2, 67.5, 84.6])
fat = np.array([21.3, 15.7, 20.1, 18.4, 17.1, 22, 32.2, 36.9, 27.6, 14.4])
ax = fig.add_subplot(1, 1, 1)
# Colors can be changed with the cmap option
# viridis : Default blue→yellow
# jet : rainbow colors
# hsv : periodic rainbow colors
c_points = ax.scatter(height, mass, c = fat, cmap = "hsv")
# The value set in the ticks option is displayed
# Furthermore, assign the color bar itself to another variable (in this case, cbar), and use cbar.ax.set_yticklabels to change the display
cbar = fig.colorbar(c_points, label = "body fat [%]", ticks = np.array([15, 25, 35]))
cbar.ax.set_yticklabels(np.array(["low", "mid", "high"]))
ax.set_xlabel("height [cm]")
ax.set_ylabel("weight [kg]")
plt.show()
Dot size
fig = plt.figure()
height = np.array([172.3, 165, 179.6, 174.5, 173.8, 165.4, 164.5, 174.9, 166.8, 185])
mass = np.array([75.24, 55.8, 78, 71.1, 67.7, 55.4, 63.7, 77.2, 67.5, 84.6])
fat = np.array([21.3, 15.7, 20.1, 18.4, 17.1, 22, 32.2, 36.9, 27.6, 14.4])
age = np.array([27, 25, 31, 32, 28, 36, 42, 33, 54, 28])
ax = fig.add_subplot(1, 1, 1)
# You can choose the size of the dots as an option
# (markersize for plots)
# However, in the case of scatter, you can change the size of each point by specifying a vector in c
c_points = ax.scatter(height, mass, c = fat, s = age * 4)
cbar = fig.colorbar(c_points, label = "body fat [%]", ticks = np.array([15, 25, 35]))
cbar.ax.set_yticklabels(np.array(["low", "mid", "high"]))
ax.set_xlabel("height [cm]")
ax.set_ylabel("weight [kg]")
ax.set_title("Marker size corresponds to age")
plt.show()
imshow is like displaying a matrix as you see it
fig = plt.figure()
matrix = np.array([[2, 3, 0, 0],
[1, 2, 3, 0],
[0, 1, 2, 3]])
ax = fig.add_subplot(1, 1, 1)
# min, vmax, and cmap options can also be used (see scatter)
c_matrix = ax.imshow(matrix)
# Color bars can also be used
# label and ticks options are also available
fig.colorbar(c_matrix, label = "matrix value")
ax.set_xlabel("column")
ax.set_ylabel("row")
plt.show()
If the height of the color bar is uncomfortable
fig = plt.figure()
matrix = np.array([[2, 3, 0, 0],
[1, 2, 3, 0],
[0, 1, 2, 3]])
ax = fig.add_subplot(1,1,1)
c_matrix = ax.imshow(matrix)
# The quickest way is to set fraction = (row size) / (column size) * 0.046 and pad = 0.04.
fig.colorbar(c_matrix, label = "matrix value", fraction = 3 / 4 * 0.046, pad = 0.04)
ax.set_xlabel("column")
ax.set_ylabel("row")
plt.show()
pcolor is an image like contour lines, where x and y coordinates can be specified
However, if nothing is specified, the line direction of the matrix will be x and the columns will be y direction (opposite to imshow)
fig = plt.figure()
# Create a vector for the values of x and y
x = np.linspace(-2*np.pi, 2*np.pi, 100)
y = np.linspace(-np.pi, np.pi, 100)
# Convert x and y into a matrix
x, y = np.meshgrid(x, y)
ax = fig.add_subplot(1, 1, 1)
# The basic format is ax.pcolor(matrix specifying x coordinates, matrix specifying y coordinates, matrix for heat map, shading = "auto")
# The vmin, vmax, and cmap options can also be used (see scatter)
c_pcolor = ax.pcolor(x, y, np.sin(x + y), shading = "auto")
# Color bars can also be used
# label and ticks options are also available
fig.colorbar(c_pcolor, label = r"$\sin(x+y)$")
ax.set_xlabel(r"$x$")
ax.set_ylabel(r"$y$")
ax.set_xticks(np.array([-2*np.pi, -np.pi, 0, np.pi, 2*np.pi]))
ax.set_xticklabels(np.array([r"$-2\pi$", r"$-\pi$", r"$0$", r"$\pi$", r"$2\pi$"]))
ax.set_yticks(np.array([-np.pi, 0, np.pi]))
ax.set_yticklabels(np.array([r"$-\pi$", r"$0$", r"$\pi$"]))
plt.show()
Basics of 3D Graphs
# 3D graphs are basically convenient because you can freely change the viewpoint using the mouse
# To make this possible, it is necessary to draw the graph in a separate window
# If you set %matplotlib tk (or qt) , the graph will open in a separate window
# Conversely, if you set %matplotlib inline, the graph will be displayed on the Jupyter notebook
%matplotlib tk
fig = plt.figure()
t = np.linspace(0, 2*np.pi, 100)
x = np.sin(t)
y = np.cos(t)
z = t + np.sin(2 * t)
# Adding "3d" to projection makes it a 3D graph
ax = fig.add_subplot(1, 1, 1, projection = "3d")
# A plot is a 3D line graph that also requires a vector for the z-coordinate
ax.plot(x, y, z)
# ax.set_zlabel, ax.set_zticks, ax.set_zticklabels, and ax.set_zlim can also be used
ax.set_xlabel(r"$x = \sin(t)$")
ax.set_ylabel(r"$y = \cos(t)$")
ax.set_zlabel(r"$z = t + \sin(2t)$")
plt.show()
Dispersal Chart
%matplotlib tk
fig = plt.figure()
age = np.array([27, 25, 31, 32, 28, 36, 42, 33, 54, 28])
height = np.array([172.3, 165, 179.6, 174.5, 173.8, 165.4, 164.5, 174.9, 166.8, 185])
mass = np.array([75.24, 55.8, 78, 71.1, 67.7, 55.4, 63.7, 77.2, 67.5, 84.6])
fat = np.array([21.3, 15.7, 20.1, 18.4, 17.1, 22, 32.2, 36.9, 27.6, 14.4])
ax = fig.add_subplot(1, 1, 1, projection = "3d")
# 3D scatter can specify vectors corresponding to colors in the same way as 2D scatter
c_points = ax.scatter(height, mass, fat, c = age)
# The color bars are close to the graph when set to default, so it is better to move them away a little using the pad option
plt.colorbar(c_points, label = "年齢 [歳]", pad = 0.15)
ax.set_xlabel("height [cm]")
ax.set_ylabel("weight [kg]")
ax.set_zlabel("body fat [%]")
plt.show()
Curved surface (wireframe): alternative to pcolor
%matplotlib tk
fig = plt.figure()
x = np.linspace(- 2*np.pi, 2*np.pi,100)
y = np.linspace(- np.pi, np.pi, 100)
x, y = np.meshgrid(x, y)
ax = fig.add_subplot(1, 1, 1, projection = "3d")
# Displaying curved surfaces with ax.plot_wireframe
ax.plot_wireframe(x, y, np.sin(x) + np.cos(y))
ax.set_xlabel(r"$x$")
ax.set_ylabel(r"$y$")
ax.set_zlabel(r"$\sin(x)+\cos(y)$")
ax.set_xticks(np.array([-2*np.pi, -np.pi, 0, np.pi, 2*np.pi]))
ax.set_xticklabels(np.array([r"$-2\pi$", r"$-\pi$", r"$0$", r"$\pi$", r"$2\pi$"]))
ax.set_yticks(np.array([-np.pi, 0, np.pi]))
ax.set_yticklabels(np.array([r"$-\pi$", r"$0$", r"$\pi$"]))
plt.show()
colored surface
%matplotlib tk
fig = plt.figure()
x = np.linspace(- 2*np.pi, 2*np.pi,100)
y = np.linspace(- np.pi, np.pi, 100)
x, y = np.meshgrid(x, y)
ax = fig.add_subplot(1, 1, 1, projection = "3d")
# Color-coded surface display with ax.plot_surface with cmap option
c_surface = ax.plot_surface(x, y, np.sin(x) + np.cos(y), cmap = "viridis")
plt.colorbar(c_surface, pad = 0.15)
ax.set_xlabel(r"$x$")
ax.set_ylabel(r"$y$")
ax.set_zlabel(r"$\sin(x)+\cos(y)$")
ax.set_xticks(np.array([-2*np.pi, -np.pi, 0, np.pi, 2*np.pi]))
ax.set_xticklabels(np.array([r"$-2\pi$", r"$-\pi$", r"$0$", r"$\pi$", r"$2\pi$"]))
ax.set_yticks(np.array([-np.pi, 0, np.pi]))
ax.set_yticklabels(np.array([r"$-\pi$", r"$0$", r"$\pi$"]))
plt.show()
The animation is created in the manner of a so-called flipbook.
That is, the graph is displayed for a certain (short) amount of time, and the action is repeated.
In the case of PyPlot, the graph is repeatedly erased and then displayed.
# Animations are displayed in a separate window, similar to 3D graphs
# Incidentally, saving animations in PyPlot is troublesome, so it is better to give up on that
%matplotlib tk
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
q = np.pi / 4
v0 = 5.0
v0x = v0 * np.cos(q)
v0y = v0 * np.sin(q)
g = 9.8
t = np.array([0.0])
x = np.array([0.0])
y = np.array([0.0])
# For loop to display animation
for it in range(200):
t_now = it * 0.0035
x_now = v0x * t_now
y_now = v0y * t_now - 0.5 * g * t_now ** 2
t = np.append(t, t_now)
x = np.append(x, x_now)
y = np.append(y, y_now)
# Graph drawing
# Delete the previous graph
ax.cla()
# Plotting a new graph
ax.scatter(x_now, y_now)
ax.plot(x, y)
ax.set_xlabel("horizontal distance [m]")
ax.set_ylabel("vertical distance [m]")
# It is better to decide the maximum and minimum values for the axis in advance
ax.set_xlim(0, 3)
ax.set_ylim(0, 0.8)
ax.set_title("t = " + "{:5.3f}".format(t_now) + " [sec]")
# Draw a graph and wait for the time (seconds) specified in ()
plt.pause(0.05)